2025年新课程实践与探究丛书九年级数学下册人教版


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年新课程实践与探究丛书九年级数学下册人教版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



《2025年新课程实践与探究丛书九年级数学下册人教版》

例3 如图,在△ABC中,CD⊥AB,BE⊥AC,$\frac{DE}{BC}$ = $\frac{2}{5}$,则sin A的值为( )


A. $\frac{2}{5}$
B. $\frac{\sqrt{21}}{5}$
C. $\frac{\sqrt{21}}{2}$
D. $\frac{3}{5}$
答案: B
3. 如图,AC是⊙O的直径,PA⊥AC,连接OP,弦CB//OP,直线PB交直线AC于点D,BD = 2PA.
(1) 求证:直线PB是⊙O的切线;
(2) 探究线段PO与线段BC之间的数量关系,并加以证明;
(3) 求sin∠OPA的值.

答案:

(1) 连接 $OB$,如图. $\because BC// OP$,$\therefore \angle BCO=\angle POA$,$\angle CBO=\angle POB$, $\therefore \angle POA=\angle POB$, 又 $\because PO = PO$,$OB = OA$, $\therefore \triangle POB\cong\triangle POA$. $\therefore \angle PBO=\angle PAO = 90^{\circ}$. $\therefore PB$ 是 $\odot O$ 的切线.
(2) $2PO = 3BC$. $\because \triangle POB\cong\triangle POA$,$\therefore PB = PA$. $\because BD = 2PA$,$\therefore BD = 2PB$. $\because BC// PO$,$\therefore \triangle DBC\sim\triangle DPO$. $\therefore \frac{BC}{PO}=\frac{BD}{PD}=\frac{2}{3}$,$\therefore 2PO = 3BC$.
(3) $\because \triangle DBC\sim\triangle DPO$, $\therefore \frac{DC}{DO}=\frac{BD}{PD}=\frac{2}{3}$, 即 $DC=\frac{2}{3}OD$. $\therefore OC=\frac{1}{3}OD$, $\therefore DC = 2OC$. 设 $OA = x$,$PA = y$. 则 $OD = 3x$,$OB = x$,$BD = 2y$. 在 $Rt\triangle OBD$ 中,由勾股定理得 $(3x)^{2}=x^{2}+(2y)^{2}$,即 $2x^{2}=y^{2}$. $\because x>0$,$y>0$,$\therefore y=\sqrt{2}x$,$OP=\sqrt{x^{2}+y^{2}}=\sqrt{3}x$. $\therefore \sin\angle OPA=\frac{OA}{OP}=\frac{x}{\sqrt{3}x}=\frac{1}{\sqrt{3}}=\frac{\sqrt{3}}{3}$.

例4 如图,线段AB是⊙O的直径,弦CD⊥AB于点H,M是$\overset{\frown}{CBD}$上任意一点,AH = 2,CH = 4,求sin∠CMD的值.

答案:
如图,连接 $OC$,$OD$. $\because AB\perp CD$,$\therefore \angle CHO = 90^{\circ}$,在 $Rt\triangle COH$ 中,$\because OC = r$,$OH = r - 2$,$CH = 4$,$\therefore r^{2}=4^{2}+(r - 2)^{2}$,$\therefore r = 5$. $\because AB\perp CD$,$AB$ 是直径, $\therefore \overset{\frown}{AD}=\overset{\frown}{AC}=\frac{1}{2}\overset{\frown}{CD}$,$\therefore \angle AOC=\frac{1}{2}\angle COD$, $\because \angle CMD=\frac{1}{2}\angle COD$,$\therefore \angle CMD=\angle COA$, $\therefore \sin\angle CMD=\sin\angle COA=\frac{CH}{CO}=\frac{4}{5}$.

查看更多完整答案,请扫码查看

关闭