2025年同步实践评价课程基础训练高中数学必修第二册


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年同步实践评价课程基础训练高中数学必修第二册 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



《2025年同步实践评价课程基础训练高中数学必修第二册》

类型3 用已知向量表示未知向量
【例3】(1)如图,▱ABCD中,E是BC的中点,若$\overrightarrow{AB}$ = a,$\overrightarrow{AD}$ = b,则$\overrightarrow{DE}$ = ( )
A.$\frac{1}{2}$a-b B.$\frac{1}{2}$a + b C.a + $\frac{1}{2}$b D.a-$\frac{1}{2}$b
(2)如图所示,D,E分别是△ABC的边AB,AC的中点,M,N分别是DE,BC的中点,已知$\overrightarrow{BC}$ = a,$\overrightarrow{BD}$ = b,试用a,b分别表示$\overrightarrow{DE}$,$\overrightarrow{CE}$,$\overrightarrow{MN}$.
[尝试解答]
母题探究
1.本例(1)中,设AC与BD相交于点O,F是线段OD的中点,AF的延长线交DC于点G,试用a,b表示$\overrightarrow{AG}$.
2.本例(1)中,将“若$\overrightarrow{AB}$ = a,$\overrightarrow{AD}$ = b,则$\overrightarrow{DE}$ =”改为“若点F为边AB的中点,设a = $\overrightarrow{DE}$,b = $\overrightarrow{DF}$,用a,b表示$\overrightarrow{DB}$”.

答案: 例3 
(1)D
(2)DE=$\frac{1}{2}$a,CE=−$\frac{1}{2}$a+b,MN=$\frac{1}{4}$a−b
母题探究
1.AG=$\frac{1}{3}$a+b
2.DB=$\frac{2}{3}$a+$\frac{2}{3}$b

查看更多完整答案,请扫码查看

关闭