2024年高中必刷题高二数学选择性必修第一册人教B版


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2024年高中必刷题高二数学选择性必修第一册人教B版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



《2024年高中必刷题高二数学选择性必修第一册人教B版》

1.[安徽师大附中2024高二期中]如图,在四棱锥P - ABCD中,底面ABCD是正方形,E是PD的中点,点F满足$\overrightarrow{CF}=2\overrightarrow{FB}$。若$\overrightarrow{PA}=\boldsymbol{a},\overrightarrow{PB}=\boldsymbol{b},\overrightarrow{PC}=\boldsymbol{c}$,则$\overrightarrow{FE}=$ ( )
BF
A.$\frac{1}{2}\boldsymbol{a}-\frac{4}{3}\boldsymbol{b}+\frac{1}{6}\boldsymbol{c}$
B.$\frac{1}{2}\boldsymbol{a}-\frac{4}{3}\boldsymbol{b}-\frac{1}{6}\boldsymbol{c}$
C.$\frac{1}{2}\boldsymbol{a}-\frac{7}{6}\boldsymbol{b}+\frac{1}{6}\boldsymbol{c}$
D.$\frac{1}{2}\boldsymbol{a}-\frac{7}{6}\boldsymbol{b}-\frac{1}{6}\boldsymbol{c}$
答案: C 【解析】由题意知$\overrightarrow{FE}=\overrightarrow{PE}-\overrightarrow{PF}=\frac{1}{2}\overrightarrow{PD}-(\overrightarrow{PC}+\overrightarrow{CF})=\frac{1}{2}(\overrightarrow{PB}+\overrightarrow{BD})-\overrightarrow{PC}-\frac{2}{3}\overrightarrow{CB}=\frac{1}{2}(\overrightarrow{BD}+\overrightarrow{PB})-\overrightarrow{PC}-\frac{2}{3}(\overrightarrow{PB}-\overrightarrow{PC})=\frac{1}{2}(\overrightarrow{BA}+\overrightarrow{BC})-\frac{1}{3}\overrightarrow{PC}-\frac{1}{6}\overrightarrow{PB}=\frac{1}{2}(\overrightarrow{PA}-\overrightarrow{PB}+\overrightarrow{PC}-\overrightarrow{PB})-\frac{1}{3}\overrightarrow{PC}-\frac{1}{6}\overrightarrow{PB}=\frac{1}{2}\overrightarrow{PA}-\frac{7}{6}\overrightarrow{PB}+\frac{1}{6}\overrightarrow{PC}=\frac{1}{2}\boldsymbol{a}-\frac{7}{6}\boldsymbol{b}+\frac{1}{6}\boldsymbol{c}$. 故选 C.
2.已知空间两个单位向量$\overrightarrow{OA}=(m,n,0),\overrightarrow{OB}=(0,n,p)$与向量$\overrightarrow{OC}=(1,1,1)$的夹角都等于$\frac{\pi}{4}$,则$\cos\angle AOB=$ ( )
A.$\frac{2 - \sqrt{3}}{4}$
B.$\frac{2 + \sqrt{3}}{2}$
C.$\frac{2 - \sqrt{3}}{4}$或$\frac{2 + \sqrt{3}}{4}$
D.$\frac{2 - \sqrt{3}}{2}$或$\frac{2 + \sqrt{3}}{2}$
答案: C 【解析】$\because$空间两个单位向量$\overrightarrow{OA}=(m,n,0)$,$\overrightarrow{OB}=(0,n,p)$与向量$\overrightarrow{OC}=(1,1,1)$的夹角都等于$\frac{\pi}{4}$,$\therefore\angle AOC = \angle BOC=\frac{\pi}{4}$,$|\overrightarrow{OC}|=\sqrt{3}$,$\therefore\overrightarrow{OA}\cdot\overrightarrow{OC}=|\overrightarrow{OA}|\cdot|\overrightarrow{OC}|\cdot\cos\angle AOC=\frac{\sqrt{6}}{2}$,又$\overrightarrow{OA}\cdot\overrightarrow{OC}=m + n$,$\therefore m + n=\frac{\sqrt{6}}{2}$,又$\overrightarrow{OA}$为单位向量,$\therefore m^{2}+n^{2}=1$. 联立$\begin{cases}m + n=\frac{\sqrt{6}}{2}\\m^{2}+n^{2}=1\end{cases}$,得$\begin{cases}m^{2}=\frac{2+\sqrt{3}}{4}\\n^{2}=\frac{2-\sqrt{3}}{4}\end{cases}$或$\begin{cases}m^{2}=\frac{2-\sqrt{3}}{4}\\n^{2}=\frac{2+\sqrt{3}}{4}\end{cases}$. $\because\overrightarrow{OA}=(m,n,0)$,$\overrightarrow{OB}=(0,n,p)$,$\therefore\cos\angle AOB=n^{2}=\frac{2+\sqrt{3}}{4}$. 故选 C.
3.[陕西西安长安区一中2024高二期中]已知向量$\overrightarrow{OA}=(1,1,2),\overrightarrow{OB}=(-1,0,2),\overrightarrow{OC}=(2,1,\lambda)$。若O,A,B,C四点共面,则$\overrightarrow{OC}$在$\overrightarrow{OB}$上的投影向量的模为 ( )
A.$\frac{2\sqrt{5}}{5}$
B.$\frac{2}{5}$
C.$\sqrt{2}$
D.$\frac{\sqrt{2}}{2}$
答案: A 【解析】因为$O$,$A$,$B$,$C$四点共面,所以存在实数$x$,$y$,使得$\overrightarrow{OC}=x\overrightarrow{OA}+y\overrightarrow{OB}$,即$(2,1,\lambda)=(x - y,x,2x + 2y)$,即$\begin{cases}x - y=2\\x = 1\\\lambda=2x + 2y\end{cases}$,解得$\begin{cases}x = 1\\y=-1\\\lambda=0\end{cases}$,则$\overrightarrow{OC}=(2,1,0)$,所以$\overrightarrow{OC}$在$\overrightarrow{OB}$上的投影向量的模为$\frac{|\overrightarrow{OB}\cdot\overrightarrow{OC}|}{|\overrightarrow{OB}|}=\frac{2}{\sqrt{5}}=\frac{2\sqrt{5}}{5}$. 故选 A.
4.[湖北武汉2024高二期中联考]已知三棱锥P - ABC的体积为15,M是空间中一点,$\overrightarrow{PM}=-\frac{1}{15}\overrightarrow{PA}+\frac{1}{5}\overrightarrow{PB}+\frac{4}{15}\overrightarrow{PC}$,则三棱锥A - MBC的体积是 ( )
A.7
B.8
C.9
D.10
答案:
C 【解析】因为$\overrightarrow{PM}=-\frac{1}{15}\overrightarrow{PA}+\frac{1}{5}\overrightarrow{PB}+\frac{4}{15}\overrightarrow{PC}$,所以$15\overrightarrow{PM}=-\overrightarrow{PA}+3\overrightarrow{PB}+4\overrightarrow{PC}$,即$15\overrightarrow{PM}=-\overrightarrow{PM}-\overrightarrow{MA}+3\overrightarrow{PM}+3\overrightarrow{MB}+4\overrightarrow{PM}+4\overrightarrow{MC}$,即$9\overrightarrow{PM}=-\overrightarrow{MA}+3\overrightarrow{MB}+4\overrightarrow{MC}$,所以$\frac{3}{2}\overrightarrow{PM}=-\frac{1}{6}\overrightarrow{MA}+\frac{1}{2}\overrightarrow{MB}+\frac{2}{3}\overrightarrow{MC}$. 因为$-\frac{1}{6}+\frac{1}{2}+\frac{2}{3}=1$,所以由空间向量基本定理可知,在平面$ABC$内存在一点$D$,使得$\overrightarrow{MD}=-\frac{1}{6}\overrightarrow{MA}+\frac{1}{2}\overrightarrow{MB}+\frac{2}{3}\overrightarrow{MC}$成立,即$\frac{3}{2}\overrightarrow{PM}=\overrightarrow{MD}$,所以$\overrightarrow{PM}=\frac{2}{3}\overrightarrow{MD}$,即$\overrightarrow{PD}=\frac{5}{3}\overrightarrow{MD}$,则$\overrightarrow{MD}=\frac{3}{5}\overrightarrow{PD}$. 又三棱锥$P - ABC$的体积为$15$,则$V_{A - MBC}=V_{M - ABC}=\frac{3}{5}V_{P - ABC}=\frac{3}{5}\times15 = 9$. 故选 C.

5.[福建厦门2024高二阶段性检测]已知四边形ABCD满足$\overrightarrow{AB}\cdot\overrightarrow{BC}>0,\overrightarrow{BC}\cdot\overrightarrow{CD}>0,\overrightarrow{CD}\cdot\overrightarrow{DA}>0,\overrightarrow{DA}\cdot\overrightarrow{AB}>0$,则该四边形为 ( )
A.平行四边形
B.梯形
C.长方形
D.空间四边形
答案: D 【解析】由$\overrightarrow{AB}\cdot\overrightarrow{BC}>0$,可得$\cos\langle\overrightarrow{AB},\overrightarrow{BC}\rangle=\frac{\overrightarrow{AB}\cdot\overrightarrow{BC}}{|\overrightarrow{AB}||\overrightarrow{BC}|}>0$,根据两个向量的夹角的定义,可得四边形$ABCD$中,$\angle ABC\in(\frac{\pi}{2},\pi)$,同理可得在四边形$ABCD$中,$\angle BAD\in(\frac{\pi}{2},\pi)$,$\angle BCD\in(\frac{\pi}{2},\pi)$,$\angle CDA\in(\frac{\pi}{2},\pi)$,则这个四边形$ABCD$只能为空间四边形. 故选 D.
6.[浙江杭州第二中学2024高二期中]如图,在棱长为3的正方体ABCD - A₁B₁C₁D₁中,$\overrightarrow{BC}=3\overrightarrow{EC}$,点P在底面正方形ABCD内移动(包含边界),且满足$B_{1}P\perp D_{1}E$,则线段$B_{1}P$长度的最大值为 ( )
EC
A.$\frac{3\sqrt{190}}{10}$
B.$\sqrt{22}$
C.$3\sqrt{2}$
D.$\frac{\sqrt{166}}{3}$
答案:
B 【解析】依据题意可以建立如图所示的空间直角坐标系,则$D_{1}(0,0,3)$,$E(1,3,0)$,$B_{1}(3,3,3)$,
r
设$P(x,y,0)(x,y\in[0,3])$,所以$\overrightarrow{B_{1}P}=(x - 3,y - 3,-3)$,$\overrightarrow{D_{1}E}=(1,3,-3)$,则$\overrightarrow{B_{1}P}\cdot\overrightarrow{D_{1}E}=x + 3y-3 = 0$,则$x = 3 - 3y$,所以$0\leqslant3 - 3y\leqslant3$,即$y\in[0,1]$. 而$|\overrightarrow{B_{1}P}|=\sqrt{(x - 3)^{2}+(y - 3)^{2}+9}=\sqrt{10y^{2}-6y + 18}$,由二次函数的单调性可知$t = 10y^{2}-6y + 18=10(y-\frac{3}{10})^{2}+18-\frac{9}{10}$,当$y = 1$时,$t_{\max}=22$,则$|\overrightarrow{B_{1}P}|_{\max}=\sqrt{22}$. 故选 B.
7.[广东东莞中学2024高二段考]正四面体PABC的棱长为$\sqrt{2}$,若点Q是该正四面体外接球球面上一动点,则$\overrightarrow{QA}\cdot\overrightarrow{QC}$的最大值为 ( )
A.$\frac{\sqrt{6}}{2}$
B.$\sqrt{3}$
C.$\frac{\sqrt{3}+1}{2}$
D.$\frac{\sqrt{3}}{2}$
答案:
C 【解析】由题意,如图①所示,设点$O$为正四面体$PABC$的外接球球心,连接$OA$,$OB$,$OC$,$OP$.
图①
则$OA = OB = OC = OP=\frac{\sqrt{6}}{4}\times\sqrt{2}=\frac{\sqrt{3}}{2}$,且$\overrightarrow{QA}\cdot\overrightarrow{QC}=(\overrightarrow{QO}+\overrightarrow{OA})\cdot(\overrightarrow{QO}+\overrightarrow{OC})=|\overrightarrow{QO}|^{2}+\overrightarrow{QO}\cdot(\overrightarrow{OA}+\overrightarrow{OC})+\overrightarrow{OA}\cdot\overrightarrow{OC}=(\frac{\sqrt{3}}{2})^{2}+\overrightarrow{QO}\cdot(\overrightarrow{OA}+\overrightarrow{OC})+|\overrightarrow{OA}||\overrightarrow{OC}|\cos\angle AOC=\frac{3}{4}+\overrightarrow{QO}\cdot(\overrightarrow{OA}+\overrightarrow{OC})+|\overrightarrow{OA}||\overrightarrow{OC}|\frac{OA^{2}+OC^{2}-AC^{2}}{2|OA|\cdot|OC|}=\frac{3}{4}+\overrightarrow{QO}\cdot(\overrightarrow{OA}+\overrightarrow{OC})+\frac{OA^{2}+OC^{2}-AC^{2}}{2}=\frac{3}{4}+\overrightarrow{QO}\cdot(\overrightarrow{OA}+\overrightarrow{OC})+\frac{(\frac{\sqrt{3}}{2})^{2}+(\frac{\sqrt{3}}{2})^{2}-(\sqrt{2})^{2}}{2}=\frac{1}{2}+\overrightarrow{QO}\cdot(\overrightarrow{OA}+\overrightarrow{OC})$. 当$\overrightarrow{QO}$与$\overrightarrow{OA}+\overrightarrow{OC}$同向时,$\overrightarrow{QA}\cdot\overrightarrow{QC}$的值最大. 设$\overrightarrow{OA}+\overrightarrow{OC}=\overrightarrow{OO'}$,
0图②
设$AC$的中点为$D$,连接$OD$,如图②所示. $AD = CD=\frac{1}{2}AC=\frac{\sqrt{2}}{2}$,$\therefore OD=\sqrt{AO^{2}-AD^{2}}=\sqrt{(\frac{\sqrt{3}}{2})^{2}-(\frac{\sqrt{2}}{2})^{2}}=\frac{1}{2}$,$OO' = 2OD = 1$,故$(\overrightarrow{QA}\cdot\overrightarrow{QC})_{\max}=\frac{1}{2}+\frac{\sqrt{3}}{2}\times1\times\cos0^{\circ}=\frac{\sqrt{3}+1}{2}$,故选 C.
【多种解法】取$AC$中点$M$,正四面体$PABC$的外接球球心为$O$,连接$OA$(图略),则$\overrightarrow{QA}\cdot\overrightarrow{QC}=(\overrightarrow{QM}+\overrightarrow{MA})\cdot(\overrightarrow{QM}+\overrightarrow{MC})=(\overrightarrow{QM}-\frac{1}{2}\overrightarrow{AC})\cdot(\overrightarrow{QM}+\frac{1}{2}\overrightarrow{AC})=\overrightarrow{QM}^{2}-\frac{1}{4}\overrightarrow{AC}^{2}$,因为$AC$长度是定值,故当$|\overrightarrow{QM}|$最大时,数量积最大. 显然,当$Q$在$MO$的延长线与球面的交点处时,$|\overrightarrow{QM}|$最大. 因为$OA=\frac{\sqrt{6}}{4}\times\sqrt{2}=\frac{\sqrt{3}}{2}$,所以$OM=\sqrt{OA^{2}-(\frac{1}{2}AC)^{2}}=\frac{1}{2}$,此时$QM=OM+\frac{\sqrt{3}}{2}=\frac{1+\sqrt{3}}{2}$,则$(\overrightarrow{QA}\cdot\overrightarrow{QC})_{\max}=\overrightarrow{QM}^{2}-\frac{1}{4}AC^{2}=\frac{\sqrt{3}+1}{2}$.
【二级结论】棱长为$a$的正四面体,其高为$\frac{\sqrt{6}}{3}a$,外接球半径$R=\frac{\sqrt{6}}{4}a$,内切球半径$r=\frac{\sqrt{6}}{12}a$.
【二级结论】极化恒等式
(1)根据向量的数量积运算,对任意向量$\boldsymbol{a}$,$\boldsymbol{b}$,有$\boldsymbol{a}\cdot\boldsymbol{b}=\frac{1}{4}[(\boldsymbol{a}+\boldsymbol{b})^{2}-(\boldsymbol{a}-\boldsymbol{b})^{2}]$,则在平行四边形$ABCD$中,$\overrightarrow{AB}\cdot\overrightarrow{AD}=\frac{1}{4}(\overrightarrow{AC}^{2}-\overrightarrow{BD}^{2})$.
B
(2)在三角形$ABC$中,若$D$为$BC$边的中点,则$\overrightarrow{AB}\cdot\overrightarrow{AC}=\frac{1}{4}[(2\overrightarrow{AD})^{2}-\overrightarrow{BC}^{2}]$.
8.(多选)[山东济宁2024高二期中]已知空间中三点A(0,1,0),B(2,2,0),C(-1,3,1),则下列说法正确的是 ( )
A.$|\overrightarrow{AB}|=\sqrt{5}$
B.$\overrightarrow{AB}$与$\overrightarrow{BC}$是共线向量
C.$\overrightarrow{AB}$和$\overrightarrow{AC}$夹角的余弦值是0
D.与$\overrightarrow{AC}$同向的单位向量是$(-\frac{\sqrt{6}}{6},\frac{\sqrt{6}}{3},\frac{\sqrt{6}}{6})$
答案: ACD 【解析】$\overrightarrow{AB}=(2,1,0)$,$\overrightarrow{BC}=(-3,1,1)$,$\overrightarrow{AC}=(-1,2,1)$,所以$|\overrightarrow{AB}|=\sqrt{2^{2}+1^{2}}=\sqrt{5}$,A选项正确;$\frac{2}{-3}\neq\frac{1}{1}$,所以$\overrightarrow{AB}$与$\overrightarrow{BC}$不共线,B选项错误;$\overrightarrow{AB}\cdot\overrightarrow{AC}=-2 + 2 = 0$,所以$\overrightarrow{AB}$和$\overrightarrow{AC}$夹角的余弦值是$0$,C选项正确;与$\overrightarrow{AC}$同向的单位向量是$\frac{\overrightarrow{AC}}{|\overrightarrow{AC}|}=\frac{(-1,2,1)}{\sqrt{1 + 4+1}}=(-\frac{\sqrt{6}}{6},\frac{\sqrt{6}}{3},\frac{\sqrt{6}}{6})$,D选项正确. 故选 ACD.
9.(多选)[山西朔州怀仁一中2024高二期中]已知三棱柱ABC - A₁B₁C₁,P为空间内一点,若$\overrightarrow{BP}=\lambda\overrightarrow{AB_{1}}+\mu\overrightarrow{BC_{1}}$,其中$\lambda,\mu\in(0,1)$,则 ( )
A.若$\lambda = 1$,则点P在棱$B_{1}C_{1}$上(不包含点$B_{1}$)
B.若$\lambda=\mu$,则点P在线段$BC_{1}$上(不包含点B)
C.若$\lambda=\mu=\frac{1}{2}$,则点P为棱$CC_{1}$的中点
D.若$\lambda+\mu = 1$,则点P在线段$B_{1}C$上(不包含端点)
答案:
ABD 【解析】作出三棱柱$ABC - A_{1}B_{1}C_{1}$,如图.
A−−−
对于A,当$\lambda = 1$时,$\overrightarrow{BP}=\overrightarrow{BB_{1}}+\mu\overrightarrow{BC}$,则$\overrightarrow{B_{1}P}=\overrightarrow{BP}-\overrightarrow{BB_{1}}=\mu\overrightarrow{BC}=\mu\overrightarrow{B_{1}C_{1}}$,所以点$P$在棱$B_{1}C_{1}$上(不包含点$B_{1}$),故A正确;对于B,当$\lambda=\mu$时,$\overrightarrow{BP}=\lambda(\overrightarrow{BC}+\overrightarrow{BB_{1}})=\lambda\overrightarrow{BC_{1}}$,所以点$P$在线段$BC_{1}$上(不包含点$B$),故B正确;对于C,当$\lambda=\mu=\frac{1}{2}$时,由B知$\overrightarrow{BP}=\frac{1}{2}\overrightarrow{BC_{1}}$,所以$P$为线段$BC_{1}$的中点,故C错误;对于D,当$\lambda+\mu = 1$时,$\mu = 1-\lambda$,所以$\overrightarrow{BP}=\lambda\overrightarrow{BB_{1}}+(1 - \lambda)\overrightarrow{BC}$,则$\overrightarrow{BP}-\overrightarrow{BC}=\lambda\overrightarrow{BB_{1}}-\lambda\overrightarrow{BC}$,即$\overrightarrow{CP}=\lambda\overrightarrow{CB_{1}}$,所以点$P$在线段$B_{1}C$上(不包含端点),故D正确. 故选 ABD.
10.(多选)[山东临沂2024高二月考]已知单位向量$\boldsymbol{i},\boldsymbol{j},\boldsymbol{k}$两两的夹角均为$\theta(0<\theta<\pi$,且$\theta\neq\frac{\pi}{2})$。若空间向量$\boldsymbol{a}$满足$\boldsymbol{a}=x\boldsymbol{i}+y\boldsymbol{j}+z\boldsymbol{k}(x,y,z\in R)$,则有序实数组$(x,y,z)$称为向量$\boldsymbol{a}$在“仿射”坐标系Oxyz(O为坐标原点)下的“仿射”坐标,记作$\boldsymbol{a}=(x,y,z)\theta$,则下列说法正确的有 ( )
A.已知$\boldsymbol{a}=(1,3,-2)\theta,\boldsymbol{b}=(4,0,2)\theta$,则$\boldsymbol{a}\cdot\boldsymbol{b}=0$
B.已知$\boldsymbol{a}=(x,y,0)\frac{\pi}{3},\boldsymbol{b}=(0,0,z)\frac{\pi}{3}$,其中$x,y,z>0$,则当且仅当$x = y$时,向量$\boldsymbol{a},\boldsymbol{b}$的夹角取得最小值
C.已知$\boldsymbol{a}=(x_{1},y_{1},z_{1})\theta,\boldsymbol{b}=(x_{2},y_{2},z_{2})\theta$,则$\boldsymbol{a}+\boldsymbol{b}=(x_{1}+x_{2},y_{1}+y_{2},z_{1}+z_{2})\theta$
D.已知$\overrightarrow{OA}=(1,0,0)\frac{\pi}{3},\overrightarrow{OB}=(0,1,0)\frac{\pi}{3},\overrightarrow{OC}=(0,0,1)\frac{\pi}{3}$,则三棱锥O - ABC的表面积$S = \sqrt{2}$
答案:
BC 【解析】由定义可得$\boldsymbol{a}\cdot\boldsymbol{b}=(1,3,-2)\theta\cdot(4,0,2)\theta=( \boldsymbol{i}+3\boldsymbol{j}-2\boldsymbol{k})\cdot(4\boldsymbol{i}+2\boldsymbol{k})=12\cos\theta$,因为$0<\theta<\pi$,且$\theta\neq\frac{\pi}{2}$,所以$\boldsymbol{a}\cdot\boldsymbol{b}\neq0$,故A错误;如图所示,设$\overrightarrow{OB}=\boldsymbol{b}$,$\overrightarrow{OA}=\boldsymbol{a}$,则点$A$在平面$Oxy$上,点$B$在$z$轴上,由图易知当$x = y$时,$\angle AOB$取得最小值,即向量$\boldsymbol{a}$与$\boldsymbol{b}$的夹角取得最小值,故B正确;根据“仿射”坐标的定义可得$\boldsymbol{a}+\boldsymbol{b}=(x_{1},y_{1},z_{1})\theta+(x_{2},y_{2},z_{2})\theta=(x_{1}\boldsymbol{i}+y_{1}\boldsymbol{j}+z_{1}\boldsymbol{k})+(x_{2}\boldsymbol{i}+y_{2}\boldsymbol{j}+z_{2}\boldsymbol{k})=(x_{1}+x_{2})\boldsymbol{i}+(y_{1}+y_{2})\boldsymbol{j}+(z_{1}+z_{2})\boldsymbol{k}=(x_{1}+x_{2},y_{1}+y_{2},z_{1}+z_{2})\theta$,故C正确;由已知可得三棱锥$O - ABC$为正四面体,棱长为$1$,其表面积$S = 4\times\frac{1}{2}\times1^{2}\times\frac{\sqrt{3}}{2}=\sqrt{3}$,故D错误. 故选 BC.
11.已知向量$\boldsymbol{u}=(a,b,0),\boldsymbol{v}=(c,d,1)$,其中$a^{2}+b^{2}=c^{2}+d^{2}=1$,则$\boldsymbol{u}$与$\boldsymbol{v}$夹角的最大值为________.
答案:
$\frac{3\pi}{4}$ 【解析】使$\boldsymbol{u}$和$\boldsymbol{v}$的起点在原点,记它们的终点分别为$U$和$V$. 因为$a^{2}+b^{2}=c^{2}+d^{2}=1$,所以向量$\boldsymbol{u}$的终点$U$在以$O(0,0,0)$为圆心,$1$为半径的圆上,向量$\boldsymbol{v}$的终点$V$在以$O_{1}(0,0,1)$为圆心,$1$为半径的圆上.

12.已知向量$\boldsymbol{a}=(1,1,0),\boldsymbol{b}=(-1,0,2)$。
(1)若$(\boldsymbol{a}+k\boldsymbol{b})//(2\boldsymbol{a}+\boldsymbol{b})$,求实数k;
(2)若向量$\boldsymbol{a}+k\boldsymbol{b}$与$2\boldsymbol{a}+\boldsymbol{b}$所成角为锐角,求实数k的范围.
答案:
13.[四川成都七中2024入学考]在四棱柱ABCD - A₁B₁C₁D₁中,$\overrightarrow{D_{1}E}=k\overrightarrow{D_{1}A},\overrightarrow{D_{1}F}=k\overrightarrow{D_{1}B},\overrightarrow{D_{1}G}=k\overrightarrow{D_{1}C},\overrightarrow{D_{1}H}=k\overrightarrow{D_{1}D}$。
(1)当$k = \frac{3}{4}$时,试用$\overrightarrow{AB},\overrightarrow{AD},\overrightarrow{AA_{1}}$表示$\overrightarrow{AF}$;
(2)证明:E,F,G,H四点共面.
答案:

14.已知$\boldsymbol{a}=(x_{1},y_{1},z_{1}),\boldsymbol{b}=(x_{2},y_{2},z_{2}),\boldsymbol{c}=(x_{3},y_{3},z_{3})$,定义一种运算:$(\boldsymbol{a}\times\boldsymbol{b})\cdot\boldsymbol{c}=x_{1}y_{2}z_{3}+x_{2}y_{3}z_{1}+x_{3}y_{1}z_{2}-x_{1}y_{3}z_{2}-x_{2}y_{1}z_{3}-x_{3}y_{2}z_{1}$。已知四棱锥P - ABCD中,底面ABCD是一个平行四边形,$\overrightarrow{AB}=(2,-1,4),\overrightarrow{AD}=(4,2,0),\overrightarrow{AP}=(-1,2,1)$。
(1)求证:$PA\perp$平面ABCD;
(2)根据上述定义,计算$(\overrightarrow{AB}\times\overrightarrow{AD})\cdot\overrightarrow{AP}$的绝对值的值;
(3)求四棱锥P - ABCD的体积,说明$(\overrightarrow{AB}\times\overrightarrow{AD})\cdot\overrightarrow{AP}$的绝对值的值与四棱锥P - ABCD体积的关系,并由此猜想向量这一运算$(\overrightarrow{AB}\times\overrightarrow{AD})\cdot\overrightarrow{AP}$的绝对值的几何意义.
答案:


查看更多完整答案,请扫码查看

关闭