2024年孟建平单元测试九年级数学全一册人教版


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2024年孟建平单元测试九年级数学全一册人教版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



《2024年孟建平单元测试九年级数学全一册人教版》

8.已知二次函数①$y_{1} = -3x^{2}$,②$y_{2} = -\frac{1}{3}x^{2}$,③$y_{3} = \frac{3}{2}x^{2}$,它们的图象开口由小到大的顺序是 ( )
A.①②③
B.③②①
C.①③②
D.②③①
答案: C
9.已知二次函数$y = ax^{2}+bx + c$的图象如图所示,有以下结论:
①$b = 2a$;②$a - b + c\lt -1$;③$4a - 2b + c = -1$;④$a\gt\frac{1}{3}$.
其中所有正确结论的序号是 ( )


A.①②③④
B.①②③
C.①②
D.①③
答案: A
10.如图,抛物线$y = x^{2}+bx + c(b,c$为常数)经过点$A(1,0)$,点$B(0,3)$,点$P$在该抛物线上,其横坐标为$m$,若该抛物线在点$P$左侧部分(包括点$P$)的最低点的纵坐标为$2 - m$.则$m$的值为 ( )


A.3
B.$\frac{3 - \sqrt{5}}{2}$
C.$\frac{3\pm\sqrt{5}}{2}$
D.3或$\frac{3 - \sqrt{5}}{2}$
答案: D
11.已知方程$ax^{2}+bx + cy = 0(a,b,c$是常数),请你通过变形把它写成你所熟悉的一个函数表达式的形式,则函数表达式为$y=-\frac{a}{c}x^{2}-\frac{b}{c}x$($c\neq0$),若该函数为二次函数,则成立的条件是$a\neq0$且$c\neq0$.
答案: y=−$\frac{a}{C}$2−$\frac{6}{C}$x a≠0且c≠0
12.若抛物线$y = ax^{2}+c$与$y = 2x^{2}$的形状相同,开口方向相反,且其顶点坐标是$(0,-2)$,则该抛物线的函数表达式是$y=-2x^{2}-2$.
答案: y=−2x²−2
13.已知二次函数$y = x^{2}+(m - 1)x + 1$,当$x\gt1$时,$y$随$x$的增大而增大,则$m$的取值范围是$m\geqslant -1$.
答案: m≥−1
14.已知二次函数$y = 2x^{2}-4x - 3$,当$-2\leqslant x\leqslant2$时,该函数的最大值是$13$,最小值是$-5$.
答案: 13 −5
15.二次函数$y = \frac{2}{3}x^{2}$的图象如图所示,点$A_{0}$位于坐标原点,点$A_{1},A_{2},A_{3},\cdots,A_{100}$在$y$轴的正半轴上,点$B_{1},B_{2},B_{3},\cdots,B_{100}$在二次函数$y = \frac{2}{3}x^{2}$位于第一象限的图象上,若$\triangle A_{0}B_{1}A_{1},\triangle A_{1}B_{2}A_{2},\triangle A_{2}B_{3}A_{3},\cdots,\triangle A_{99}B_{100}A_{100}$都为等边三角形,则$B_{100}$的坐标为__________.

答案: (50$\sqrt{3}$,5000)
16.如图,已知二次函数$y = ax^{2}+bx + c(a\neq0)$的图象与$x$轴交于点$A(-1,0)$,与$y$轴的交点$B$在$(0,-2)$和$(0,-1)$之间(不包括这两点),对称轴为直线$x = 1$.下列结论:①$abc\gt0$;②$4a + 2b + c\gt0$;③$4ac - b^{2}\lt8a$;④$\frac{1}{3}\lt a\lt\frac{2}{3}$;⑤$b\gt c$.其中正确结论的序号是①②③④⑤.

答案: ①③④⑤

查看更多完整答案,请扫码查看

关闭