1. 如图,在△ABC中,分别取AB,AC的中点D,E,连接DE,过点A作AF⊥DE,垂足为F,将△ABC分割后拼接成矩形PBCQ。若DE = 5,AF = 4,则矩形PBCQ的面积是 ( )

A. 40
B. 20
C. 15
D. 10
A. 40
B. 20
C. 15
D. 10
答案:
1.A 解析由题意,可知BP=AF=4.
∵D,E分别是AB,AC 的中点,
∴DE是△ABC的中位线,
∴DE = $\frac{1}{2}$BC,
∴BC = 2DE=2×5 = 10,
∴矩形PBCQ的面积为BP·BC = 4×10 = 40.故选A.
∵D,E分别是AB,AC 的中点,
∴DE是△ABC的中位线,
∴DE = $\frac{1}{2}$BC,
∴BC = 2DE=2×5 = 10,
∴矩形PBCQ的面积为BP·BC = 4×10 = 40.故选A.
2. [2023·浙江同步练习]如图,在正方形ABCD中,点P在AC上,PE⊥AB,PF⊥BC,垂足分别为E,F,EF = 3,则PD的长为 ( )

A. 1.5
B. 2
C. 2.5
D. 3
A. 1.5
B. 2
C. 2.5
D. 3
答案:
2.D 解析如答图,连接PB.
∵四边形ABCD是正方形,
∴∠ABC = 90°,AB = AD,∠BAC = ∠DAC = 45°. 又
∵AP = AP,
∴△ABP≌△ADP,
∴BP = DP.
∵PE⊥AB,PF⊥BC,∠ABC = 90°,
∴四边形BFPE是矩形,
∴PB = EF = 3,
∴DP = 3.故选D.
2.D 解析如答图,连接PB.
∵四边形ABCD是正方形,
∴∠ABC = 90°,AB = AD,∠BAC = ∠DAC = 45°. 又
∵AP = AP,
∴△ABP≌△ADP,
∴BP = DP.
∵PE⊥AB,PF⊥BC,∠ABC = 90°,
∴四边形BFPE是矩形,
∴PB = EF = 3,
∴DP = 3.故选D.
3. [2022·浙江杭州期末]如图,在矩形ABCD中,E,F是CD上的两个点,EG⊥AC,FH⊥AC,垂足分别为G,H。若AD = 2,DE = 1,CF = 2,且AG = CH,则EG + FH = ( )

A. $\sqrt{3}+1$
B. $\sqrt{5}$
C. 3
D. $\frac{5}{2}$
A. $\sqrt{3}+1$
B. $\sqrt{5}$
C. 3
D. $\frac{5}{2}$
答案:
3.B 解析如答图,过点E作EM⊥AB于点M,延长EG交AB于点Q,则△EQM是直角三角形.
∵EG⊥AC,FH⊥AC,
∴∠CHF = ∠AGQ = 90°.
∵在矩形ABCD中,CD//AB,
∴∠FCH = ∠QAG. 在△FCH和△QAG中,
∵$\begin{cases}∠CHF = ∠AGQ, \\ CH = AG, \\ ∠FCH = ∠QAG, \end{cases}$
∴△FCH≌△QAG(ASA),
∴AQ = CF = 2,FH = QG. 在矩形ABCD中,∠D = ∠DAM = 90°.
∵EM⊥AB,
∴∠AME = 90°,
∴四边形ADEM是矩形,
∴AM = DE = 1,EM = AD = 2,
∴MQ = 2 - 1 = 1,
∴在Rt△EMQ中,EQ = $\sqrt{EM^{2}+QM^{2}}=\sqrt{2^{2}+1^{2}}=\sqrt{5}$,即EG + FH = EG + QG = EQ = $\sqrt{5}$.故选B.
3.B 解析如答图,过点E作EM⊥AB于点M,延长EG交AB于点Q,则△EQM是直角三角形.
∵EG⊥AC,FH⊥AC,
∴∠CHF = ∠AGQ = 90°.
∵在矩形ABCD中,CD//AB,
∴∠FCH = ∠QAG. 在△FCH和△QAG中,
∵$\begin{cases}∠CHF = ∠AGQ, \\ CH = AG, \\ ∠FCH = ∠QAG, \end{cases}$
∴△FCH≌△QAG(ASA),
∴AQ = CF = 2,FH = QG. 在矩形ABCD中,∠D = ∠DAM = 90°.
∵EM⊥AB,
∴∠AME = 90°,
∴四边形ADEM是矩形,
∴AM = DE = 1,EM = AD = 2,
∴MQ = 2 - 1 = 1,
∴在Rt△EMQ中,EQ = $\sqrt{EM^{2}+QM^{2}}=\sqrt{2^{2}+1^{2}}=\sqrt{5}$,即EG + FH = EG + QG = EQ = $\sqrt{5}$.故选B.
4. [2024·浙江绍兴期末]如图,矩形ABCD的对角线AC,BD交于点O,AB = 6,BC = 8,过点O作OE⊥AC,交AD于点E,过点E作EF⊥BD,垂足为F,则OE + EF的值为________。

答案:
4.$\frac{24}{5}$ 解析
∵AB = 6,BC = 8,
∴AC = $\sqrt{AB^{2}+BC^{2}}=\sqrt{6^{2}+8^{2}} = 10$,
∴AO = CO = DO = $\frac{1}{2}$AC = 5.
∵对角线AC,BD交于点O,
∴△AOD的面积为12.
∵EO⊥AO,EF⊥DO,
∴$S_{\triangle AOD}=S_{\triangle AOE}+S_{\triangle DOE}$,则12 = $\frac{1}{2}$AO·EO + $\frac{1}{2}$DO·EF,即12 = $\frac{1}{2}$×5EO + $\frac{1}{2}$×5EF,
∴EO + EF = $\frac{24}{5}$.
∵AB = 6,BC = 8,
∴AC = $\sqrt{AB^{2}+BC^{2}}=\sqrt{6^{2}+8^{2}} = 10$,
∴AO = CO = DO = $\frac{1}{2}$AC = 5.
∵对角线AC,BD交于点O,
∴△AOD的面积为12.
∵EO⊥AO,EF⊥DO,
∴$S_{\triangle AOD}=S_{\triangle AOE}+S_{\triangle DOE}$,则12 = $\frac{1}{2}$AO·EO + $\frac{1}{2}$DO·EF,即12 = $\frac{1}{2}$×5EO + $\frac{1}{2}$×5EF,
∴EO + EF = $\frac{24}{5}$.
5. [2022·浙江温州同步练习]如图,在□ABCD中,过点D作DE⊥AB于点E,点F在边CD上,CF = AE,连接AF,BF。
(1)求证:四边形BFDE是矩形。
(2)已知∠DAB = 60°,AF是∠DAB的平分线。若AD = 3,求DC的长。
(1)求证:四边形BFDE是矩形。
(2)已知∠DAB = 60°,AF是∠DAB的平分线。若AD = 3,求DC的长。
答案:
5.
(1)证明
∵四边形ABCD是平行四边形,
∴DC//AB,DC = AB.
∵CF = AE,
∴DF = BE.
∵DC//AB,
∴四边形BFDE是平行四边形.又
∵DE⊥AB,
∴四边形BFDE是矩形.
(2)解
∵∠DAB = 60°,DE⊥AB,
∴∠ADE = 30°,
∴AE = $\frac{1}{2}$AD = $\frac{1}{2}$×3 = $\frac{3}{2}$,
∴DE = $\sqrt{AD^{2}-AE^{2}}=\frac{3\sqrt{3}}{2}$.
∵四边形DFBE是矩形,
∴BF = DE = $\frac{3\sqrt{3}}{2}$,∠FBE = 90°.
∵AF平分∠DAB,
∴∠FAB = $\frac{1}{2}$∠DAB = 30°,
∴AF = 2BF = 3$\sqrt{3}$,
∴AB = $\sqrt{AF^{2}-BF^{2}}=\frac{9}{2}$,
∴CD = $\frac{9}{2}$.
(1)证明
∵四边形ABCD是平行四边形,
∴DC//AB,DC = AB.
∵CF = AE,
∴DF = BE.
∵DC//AB,
∴四边形BFDE是平行四边形.又
∵DE⊥AB,
∴四边形BFDE是矩形.
(2)解
∵∠DAB = 60°,DE⊥AB,
∴∠ADE = 30°,
∴AE = $\frac{1}{2}$AD = $\frac{1}{2}$×3 = $\frac{3}{2}$,
∴DE = $\sqrt{AD^{2}-AE^{2}}=\frac{3\sqrt{3}}{2}$.
∵四边形DFBE是矩形,
∴BF = DE = $\frac{3\sqrt{3}}{2}$,∠FBE = 90°.
∵AF平分∠DAB,
∴∠FAB = $\frac{1}{2}$∠DAB = 30°,
∴AF = 2BF = 3$\sqrt{3}$,
∴AB = $\sqrt{AF^{2}-BF^{2}}=\frac{9}{2}$,
∴CD = $\frac{9}{2}$.
6. 如图,在△ABC中,∠ABC = 90°,AC的垂直平分线分别与AC,BC及AB的延长线相交于点D,E,F。O是EF的中点,连接BO并延长到点G,且GO = BO,连接EG,FG,BD。
(1)试判断四边形EBFG的形状,并说明理由。
(2)求证:BD⊥BG。
(3)当AB = BE = 1时,求EF的长。
(1)试判断四边形EBFG的形状,并说明理由。
(2)求证:BD⊥BG。
(3)当AB = BE = 1时,求EF的长。
答案:
6.
(1)解四边形EBFG是矩形.理由如下:
∵O是EF的中点,
∴OE = OF.又
∵OB = OG,
∴四边形EBFG是平行四边形.
∵∠ABC = 90°,
∴∠FBC = 90°,
∴平行四边形EBFG是矩形.
(2)证明
∵DF是AC的垂直平分线,
∴AD = DC,∠CDE = 90°,
∴∠CED + ∠C = 90°.在Rt△ABC中,
∵∠ABC = 90°,AD = DC,
∴BD = $\frac{1}{2}$AC = CD,
∴∠DBC = ∠C.
∵四边形EBFG是矩形,
∴OE = OB,
∴∠OBE = ∠OEB.
∵∠CED = ∠OEB,
∴∠DBE + ∠OBE = 90°,即∠DBG = 90°,
∴BD⊥BG.
(3)解如答图,连接AE.
∵DF是AC的垂直平分线,
∴EA = EC.在Rt△ABE中,AE = $\sqrt{AB^{2}+BE^{2}}=\sqrt{1^{2}+1^{2}}=\sqrt{2}$,
∴EC = $\sqrt{2}$,
∴BC = BE + EC = 1 + $\sqrt{2}$.
∵∠CDE = ∠FBE = 90°,∠CED = ∠FEB,
∴∠C = ∠BFE.在△ABC和△EBF中,
∵$\begin{cases}∠C = ∠BFE, \\ ∠ABC = ∠EBF, \\ AB = BE, \end{cases}$
∴△ABC≌△EBF(AAS),
∴BF = BC = 1 + $\sqrt{2}$,
∴在Rt△EBF中,EF = $\sqrt{BE^{2}+BF^{2}}=\sqrt{4 + 2\sqrt{2}}$.
6.
(1)解四边形EBFG是矩形.理由如下:
∵O是EF的中点,
∴OE = OF.又
∵OB = OG,
∴四边形EBFG是平行四边形.
∵∠ABC = 90°,
∴∠FBC = 90°,
∴平行四边形EBFG是矩形.
(2)证明
∵DF是AC的垂直平分线,
∴AD = DC,∠CDE = 90°,
∴∠CED + ∠C = 90°.在Rt△ABC中,
∵∠ABC = 90°,AD = DC,
∴BD = $\frac{1}{2}$AC = CD,
∴∠DBC = ∠C.
∵四边形EBFG是矩形,
∴OE = OB,
∴∠OBE = ∠OEB.
∵∠CED = ∠OEB,
∴∠DBE + ∠OBE = 90°,即∠DBG = 90°,
∴BD⊥BG.
(3)解如答图,连接AE.
∵DF是AC的垂直平分线,
∴EA = EC.在Rt△ABE中,AE = $\sqrt{AB^{2}+BE^{2}}=\sqrt{1^{2}+1^{2}}=\sqrt{2}$,
∴EC = $\sqrt{2}$,
∴BC = BE + EC = 1 + $\sqrt{2}$.
∵∠CDE = ∠FBE = 90°,∠CED = ∠FEB,
∴∠C = ∠BFE.在△ABC和△EBF中,
∵$\begin{cases}∠C = ∠BFE, \\ ∠ABC = ∠EBF, \\ AB = BE, \end{cases}$
∴△ABC≌△EBF(AAS),
∴BF = BC = 1 + $\sqrt{2}$,
∴在Rt△EBF中,EF = $\sqrt{BE^{2}+BF^{2}}=\sqrt{4 + 2\sqrt{2}}$.
7. 如图,过矩形ABCD的对角线AC的中点O作EF⊥AC,交BC边于点E,交AD边于点F,分别连接AE,CF。若AB = $2\sqrt{3}$,∠DCF = 30°,则EF的长为 ( )

A. 4
B. 6
C. $\sqrt{3}$
D. $2\sqrt{3}$
A. 4
B. 6
C. $\sqrt{3}$
D. $2\sqrt{3}$
答案:
7.A 解析
∵四边形ABCD是矩形,
∴AD//BC,∠D = 90°,CD = AB = 2$\sqrt{3}$,
∴∠ACB = ∠DAC.
∵O是AC的中点,
∴AO = CO.在△AOF和△COE中,
∵$\begin{cases}∠FAO = ∠OCE, \\ AO = CO, \\ ∠AOF = ∠COE, \end{cases}$
∴△AOF≌△COE(ASA),
∴OE = OF.
∵AO = CO,
∴四边形AECF是平行四边形.又
∵EF⊥AC,
∴四边形AECF是菱形,
∴CE = CF.
∵∠DCF = 30°,
∴∠ECF = 90° - 30° = 60°,DF = $\frac{1}{2}$CF,
∴△CEF是等边三角形,$DF^{2}+CD^{2}=CF^{2}$,即$(\frac{1}{2}CF)^{2}+(2\sqrt{3})^{2}=CF^{2}$,
∴EF = CF = 4(负值已舍去).故选A.
∵四边形ABCD是矩形,
∴AD//BC,∠D = 90°,CD = AB = 2$\sqrt{3}$,
∴∠ACB = ∠DAC.
∵O是AC的中点,
∴AO = CO.在△AOF和△COE中,
∵$\begin{cases}∠FAO = ∠OCE, \\ AO = CO, \\ ∠AOF = ∠COE, \end{cases}$
∴△AOF≌△COE(ASA),
∴OE = OF.
∵AO = CO,
∴四边形AECF是平行四边形.又
∵EF⊥AC,
∴四边形AECF是菱形,
∴CE = CF.
∵∠DCF = 30°,
∴∠ECF = 90° - 30° = 60°,DF = $\frac{1}{2}$CF,
∴△CEF是等边三角形,$DF^{2}+CD^{2}=CF^{2}$,即$(\frac{1}{2}CF)^{2}+(2\sqrt{3})^{2}=CF^{2}$,
∴EF = CF = 4(负值已舍去).故选A.
查看更多完整答案,请扫码查看