11 如图,在△ABC中,∠A=40°,AB=AC,点D在AC边上,以CB,CD为边作□BCDE,则∠E的度数为 ( )

A.40°
B.50°
C.60°
D.70°
A.40°
B.50°
C.60°
D.70°
答案:
D
12 如图,在□ABCD中,AE平分∠BAD交BC于E,BE=4,EC=3,则□ABCD的周长为 ( )

A.11
B.18
C.20
D.22
A.11
B.18
C.20
D.22
答案:
D 解析:
∵四边形ABCD是平行四边形,
∴AD//BC,AD = BC,AB = CD,
∴∠DAE = ∠AEB.
∵AE平分∠BAD,
∴∠BAE = ∠DAE,
∴∠BAE = ∠AEB,
∴BA = BE = 4.
∵BC = BE + EC = 4 + 3 = 7 = AD,
∴平行四边形ABCD的周长为2×(7 + 4)=22. 故选D.
∵四边形ABCD是平行四边形,
∴AD//BC,AD = BC,AB = CD,
∴∠DAE = ∠AEB.
∵AE平分∠BAD,
∴∠BAE = ∠DAE,
∴∠BAE = ∠AEB,
∴BA = BE = 4.
∵BC = BE + EC = 4 + 3 = 7 = AD,
∴平行四边形ABCD的周长为2×(7 + 4)=22. 故选D.
13 将一副三角板在平行四边形ABCD中作如图的摆放.若∠1=30°,则∠2等于 ( )

A.55°
B.65°
C.75°
D.85°
A.55°
B.65°
C.75°
D.85°
答案:
C 解析:如答图,延长EH交AB于点N.
∵△EFH是等腰直角三角形,
∴∠FHE = 45°,
∴∠NHB = ∠FHE = 45°.
∵∠1 = 30°,
∴∠HNB = 180° - ∠1 - ∠NHB = 105°.
∵四边形ABCD是平行四边形,
∴CD//AB,
∴∠2 + ∠HNB = 180°,
∴∠2 = 75°. 故选C.
∵△EFH是等腰直角三角形,
∴∠FHE = 45°,
∴∠NHB = ∠FHE = 45°.
∵∠1 = 30°,
∴∠HNB = 180° - ∠1 - ∠NHB = 105°.
∵四边形ABCD是平行四边形,
∴CD//AB,
∴∠2 + ∠HNB = 180°,
∴∠2 = 75°. 故选C.
14(易错题)在□ABCD中,AD = 8,AE平分∠BAD交BC于点E,DF平分∠ADC交BC于点F,且EF=2,则AB的长为_______.
答案:
3或5 解析:
∵四边形ABCD为平行四边形,
∴AD//BC,AB//CD,
∴∠DAE = ∠AEB,∠ADF = ∠DFC.
∵AE平分∠BAD交BC于点E,DF平分∠ADC交BC于点F,
∴∠BAE = ∠DAE,∠CDF = ∠ADF,
∴∠BAE = ∠AEB,∠CDF = ∠DFC,
∴AB = BE,CD = CF,
∴AB = BE = CD = CF. 已知AD = 8,EF = 2,可分两种情况:当AE,DF在▱ABCD内有交点时,EF = BE + CF - BC,则BE = CF = $\frac{EF + BC}{2}$ = $\frac{EF + AD}{2}$ = 5,
∴AB = 5;当AE,DF在▱ABCD内无交点时,EF = BC - BE - CF,则BE = CF = $\frac{BC - EF}{2}$ = $\frac{AD - EF}{2}$ = 3,
∴AB = 3. 综上所述,AB的长为3或5.
∵四边形ABCD为平行四边形,
∴AD//BC,AB//CD,
∴∠DAE = ∠AEB,∠ADF = ∠DFC.
∵AE平分∠BAD交BC于点E,DF平分∠ADC交BC于点F,
∴∠BAE = ∠DAE,∠CDF = ∠ADF,
∴∠BAE = ∠AEB,∠CDF = ∠DFC,
∴AB = BE,CD = CF,
∴AB = BE = CD = CF. 已知AD = 8,EF = 2,可分两种情况:当AE,DF在▱ABCD内有交点时,EF = BE + CF - BC,则BE = CF = $\frac{EF + BC}{2}$ = $\frac{EF + AD}{2}$ = 5,
∴AB = 5;当AE,DF在▱ABCD内无交点时,EF = BC - BE - CF,则BE = CF = $\frac{BC - EF}{2}$ = $\frac{AD - EF}{2}$ = 3,
∴AB = 3. 综上所述,AB的长为3或5.
15 [2024·浙江温州二模]如图,E为□ABCD的边AB延长线上一点,AB=BE,BC交DE于点F.
(1)求证:△CDF≌△BEF.
(2)若DE平分∠ADC,AD=4,求CD的长.

(1)求证:△CDF≌△BEF.
(2)若DE平分∠ADC,AD=4,求CD的长.
答案:
(1) 证明:
∵四边形ABCD是平行四边形,
∴AB = CD,AB//CD,
∴∠CDF = ∠E,∠C = ∠EBF.
∵AB = BE,AB = CD,
∴CD = BE,
∴△CDF≌△BEF(ASA).
(2) 解:
∵DE平分∠ADC,
∴∠ADE = ∠CDE.
∵AB//CD,
∴∠E = ∠CDE,
∴∠ADE = ∠E,
∴AD = AE = 4.
∵AB = BE,AB = CD,
∴CD = $\frac{1}{2}$AE = 2.
(1) 证明:
∵四边形ABCD是平行四边形,
∴AB = CD,AB//CD,
∴∠CDF = ∠E,∠C = ∠EBF.
∵AB = BE,AB = CD,
∴CD = BE,
∴△CDF≌△BEF(ASA).
(2) 解:
∵DE平分∠ADC,
∴∠ADE = ∠CDE.
∵AB//CD,
∴∠E = ∠CDE,
∴∠ADE = ∠E,
∴AD = AE = 4.
∵AB = BE,AB = CD,
∴CD = $\frac{1}{2}$AE = 2.
16(1)在□ABCD中,当E是AB上一点,F是CD上一点,且AE=CF时,如图(1),求证:AF=CE,∠ECF=∠EAF;
(2)在□ABCD中,当E变为BA延长线上一点,F变为DC延长线上一点,且AE=CF时,如图(2),则(1)中的结论是否仍成立?不必说明理由.

(2)在□ABCD中,当E变为BA延长线上一点,F变为DC延长线上一点,且AE=CF时,如图(2),则(1)中的结论是否仍成立?不必说明理由.
答案:
(1) 证明:
∵四边形ABCD是平行四边形,
∴∠D = ∠B,AD = CB,AB = CD. 又
∵AE = CF,
∴DF = CD - CF = AB - AE = BE,
∴△ADF≌△CBE,
∴AF = CE,∠DAF = ∠BCE. 又
∵在▱ABCD中,∠BCD = ∠BAD,
∴∠ECF = ∠EAF.
(2) 解:仍成立.
(1) 证明:
∵四边形ABCD是平行四边形,
∴∠D = ∠B,AD = CB,AB = CD. 又
∵AE = CF,
∴DF = CD - CF = AB - AE = BE,
∴△ADF≌△CBE,
∴AF = CE,∠DAF = ∠BCE. 又
∵在▱ABCD中,∠BCD = ∠BAD,
∴∠ECF = ∠EAF.
(2) 解:仍成立.
查看更多完整答案,请扫码查看