13.已知$\alpha$,$\beta$均为锐角,且满足$\vert\sin\alpha - \frac{1}{2}\vert + \sqrt{(\tan\beta - 1)^{2}} = 0$,则$\alpha + \beta =$______。
答案:
$75^{\circ}$
14.在$\triangle ABC$中,$\sin B = \cos(90^{\circ}-C)=\frac{1}{2}$,那么$\triangle ABC$是____________
答案:
等腰三角形
15.先化简,再求值:$1 - \frac{a + b}{a - 2b} \div \frac{a^{2}-b^{2}}{a^{2}-2ab + b^{2}}$,其中$a = \sin45^{\circ}+2$,$b = \tan45^{\circ}$。
答案:
原式 = $1 - \frac{a + b}{a - 2b} \div \frac{(a + b)(a - b)}{(a - b)^2} = 1 - \frac{a + b}{a - 2b} \cdot \frac{a - b}{a + b} = 1 - \frac{a - b}{a - 2b} = \frac{-b}{a - 2b}$。因为$a = \sin45^{\circ} + 2 = \frac{\sqrt{2}}{2} + 2$,$b = \tan45^{\circ} = 1$,所以原式 = $\frac{-1}{\frac{\sqrt{2}}{2} + 2 - 2\times1} = -\sqrt{2}$。
16.如图,在$\triangle ABC$中,$\angle C = 90^{\circ}$,点$D$在$AC$上,已知$\angle BDC = 45^{\circ}$,$BD = 10\sqrt{2}$,$AB = 20$。求$\angle A$的度数。
答案:
因为在$Rt\triangle BDC$中,$\angle BDC = 45^{\circ}$,$BD = 10\sqrt{2}$,所以$BC = BD \cdot \sin\angle BDC = 10\sqrt{2} \times \frac{\sqrt{2}}{2} = 10$,因为$\angle C = 90^{\circ}$,$AB = 20$,所以$\sin A = \frac{BC}{AB} = \frac{10}{20} = \frac{1}{2}$,所以$\angle A = 30^{\circ}$。
17.(2024·驻马店泌阳县期末)阅读下列材料,并完成相应的任务.初中阶段,我们所学的锐角三角函数反映了直角三角形中的边角关系:
$\sin\alpha = \frac{BC}{AC}$,$\cos\alpha = \frac{AB}{AC}$,$\tan\alpha = \frac{BC}{AB}$

一般地,当$\alpha$、$\beta$为任意角时,$\sin(\alpha + \beta)$与$\sin(\alpha - \beta)$的值可以用下面的公式求得:
$\sin(\alpha + \beta)=\sin\alpha\cos\beta+\cos\alpha\sin\beta$
$\sin(\alpha - \beta)=\sin\alpha\cos\beta-\cos\alpha\sin\beta$
例如:$\sin15^{\circ}=\sin(45^{\circ}-30^{\circ})=\sin45^{\circ}\cdot\cos30^{\circ}-\cos45^{\circ}\cdot\sin30^{\circ}=\frac{\sqrt{2}}{2}\times\frac{\sqrt{3}}{2}-\frac{\sqrt{2}}{2}\times\frac{1}{2}=\frac{\sqrt{6}-\sqrt{2}}{4}$
根据上述材料内容,解决下列问题:
(1)计算:$\sin75^{\circ}=$______;
(2)在$Rt\triangle ABC$中,$\angle A = 75^{\circ}$,$\angle C = 90^{\circ}$,$AB = 4$,请你求出$AC$和$BC$的长。
$\sin\alpha = \frac{BC}{AC}$,$\cos\alpha = \frac{AB}{AC}$,$\tan\alpha = \frac{BC}{AB}$
一般地,当$\alpha$、$\beta$为任意角时,$\sin(\alpha + \beta)$与$\sin(\alpha - \beta)$的值可以用下面的公式求得:
$\sin(\alpha + \beta)=\sin\alpha\cos\beta+\cos\alpha\sin\beta$
$\sin(\alpha - \beta)=\sin\alpha\cos\beta-\cos\alpha\sin\beta$
例如:$\sin15^{\circ}=\sin(45^{\circ}-30^{\circ})=\sin45^{\circ}\cdot\cos30^{\circ}-\cos45^{\circ}\cdot\sin30^{\circ}=\frac{\sqrt{2}}{2}\times\frac{\sqrt{3}}{2}-\frac{\sqrt{2}}{2}\times\frac{1}{2}=\frac{\sqrt{6}-\sqrt{2}}{4}$
根据上述材料内容,解决下列问题:
(1)计算:$\sin75^{\circ}=$______;
(2)在$Rt\triangle ABC$中,$\angle A = 75^{\circ}$,$\angle C = 90^{\circ}$,$AB = 4$,请你求出$AC$和$BC$的长。
答案:
$\frac{\sqrt{2} + \sqrt{6}}{4}$@@
- (2)在$Rt\triangle ABC$中,因为$\sin\angle A = \sin75^{\circ} = \frac{BC}{AB} = \frac{\sqrt{2} + \sqrt{6}}{4}$,所以$BC = AB \times \frac{\sqrt{2} + \sqrt{6}}{4} = 4 \times \frac{\sqrt{2} + \sqrt{6}}{4} = \sqrt{2} + \sqrt{6}$,因为$\angle B = 90 - \angle A$,所以$\angle B = 15^{\circ}$,因为$\sin\angle B = \sin15^{\circ} = \frac{AC}{AB} = \frac{\sqrt{6} - \sqrt{2}}{4}$,所以$AC = AB \times \frac{\sqrt{6} - \sqrt{2}}{4} = \sqrt{6} - \sqrt{2}$。
查看更多完整答案,请扫码查看