1.(河池中考)在Rt△ABC中,∠C = 90°,BC = 5,AC = 12,则sinB的值是 ( )
A.$\frac{5}{12}$
B.$\frac{12}{5}$
C.$\frac{5}{13}$
D.$\frac{12}{13}$
A.$\frac{5}{12}$
B.$\frac{12}{5}$
C.$\frac{5}{13}$
D.$\frac{12}{13}$
答案:
D
2.(2024·安阳滑县期末)如图,在Rt△ABC中,∠ABC = 90°,AB = 3,BC = 4,则sinA的值是 ( )

A.$\frac{4}{3}$
B.$\frac{3}{4}$
C.$\frac{3}{5}$
D.$\frac{4}{5}$
A.$\frac{4}{3}$
B.$\frac{3}{4}$
C.$\frac{3}{5}$
D.$\frac{4}{5}$
答案:
D
3.在直角三角形ABC中,若各边的长都扩大到原来的5倍,则∠A的正弦值 ( )
A.扩大到原来的5倍
B.缩小到原来的$\frac{1}{5}$
C.不变
D.不能确定
A.扩大到原来的5倍
B.缩小到原来的$\frac{1}{5}$
C.不变
D.不能确定
答案:
C
4.(龙岩中考)如图,若点A的坐标为(1,$\sqrt{3}$),则sin∠1 = ________.

答案:
$\frac{\sqrt{3}}{2}$
5.在Rt△ABC中,∠ACB = 90°,CD是斜边AB上的中线,CD = 4,AC = 6,则sinB的值是______.
答案:
$\frac{3}{4}$
6.分别求出图中∠A,∠B的正弦值.
答案:
如图①,由勾股定理,得$AC = \sqrt{6^{2}-2^{2}} = 4\sqrt{2}$,$\sin A=\frac{BC}{AB}=\frac{1}{3}$,$\sin B=\frac{AC}{AB}=\frac{2\sqrt{2}}{3}$;如图②,由勾股定理,得$AB = \sqrt{AC^{2}+BC^{2}} = \sqrt{36 + 4} = 2\sqrt{10}$,$\sin A=\frac{BC}{AB}=\frac{2}{2\sqrt{10}}=\frac{\sqrt{10}}{10}$,$\sin B=\frac{AC}{AB}=\frac{6}{2\sqrt{10}}=\frac{3\sqrt{10}}{10}$
7.如图,⊙O的半径为3,弦AB的长为4.求sinA的值.
答案:
过点$O$作$OC\perp AB$于点$C$,则有$AC = BC$,$\because AB = 4$,$\therefore AC = 2$,在$Rt\triangle AOC$中,$OC = \sqrt{OA^{2}-AC^{2}} = \sqrt{3^{2}-2^{2}} = \sqrt{5}$,$\therefore \sin A=\frac{OC}{OA}=\frac{\sqrt{5}}{3}$
8.(云南中考)在△ABC中,∠ABC = 90°.若AC = 100,sinA = $\frac{3}{5}$,则AB的长是 ( )
A.$\frac{500}{3}$
B.$\frac{503}{5}$
C.60
D.80
A.$\frac{500}{3}$
B.$\frac{503}{5}$
C.60
D.80
答案:
D
9.如图,在△ABC中,∠C = 90°,sinA = $\frac{1}{4}$,BC = 2,求AC,AB的长.
答案:
$\because \sin A=\frac{1}{4}$,$\therefore \frac{BC}{AB}=\frac{1}{4}$,又$\because BC = 2$,$\therefore AB = 4BC = 4\times2 = 8$,在$Rt\triangle ABC$中,由勾股定理得$AC = \sqrt{AB^{2}-BC^{2}} = \sqrt{8^{2}-2^{2}} = 2\sqrt{15}$
10.(2024·临夏州)如图,在△ABC中,AB = AC = 5,sinB = $\frac{4}{5}$,则BC的长是 ( )

A.3
B.6
C.8
D.9
A.3
B.6
C.8
D.9
答案:
B
查看更多完整答案,请扫码查看