9.(2024·滨州)点M($x_1$,$y_1$)和点N($x_2$,$y_2$)在反比例函数$y = \frac{k^2 - 2k + 3}{x}$(k为常数)的图象上,若$x_1 < 0 < x_2$,则$y_1$,$y_2$,0的大小关系为 ( )
A.$y_1 < y_2 < 0$
B.$y_1 > y_2 > 0$
C.$y_1 < 0 < y_2$
D.$y_1 > 0 > y_2$
A.$y_1 < y_2 < 0$
B.$y_1 > y_2 > 0$
C.$y_1 < 0 < y_2$
D.$y_1 > 0 > y_2$
答案:
C
10.(教材P9复习题8变式)在同一平面直角坐标系中,函数$y = kx + 1$($k \neq 0$)和$y = \frac{k}{x}$($k \neq 0$)的图象大致是 ( )

答案:
D
11.(2024·陕西)已知点A(-2,$y_1$)和点B(m,$y_2$)均在反比例函数$y = - \frac{5}{x}$的图象上.若$0 < m < 1$,则$y_1 + y_2$______0.(填“>”“=”或“<”)
答案:
<
12.(2024·郑州校级月考)如图是三个反比例函数的图象的分支,其中$k_1$,$k_2$,$k_3$的大小关系是________________.

答案:
$k_1 > k_2 > k_3$
13.已知反比例函数$y = \frac{2a + 3}{x}$,当$x = 3$时,$y = 2$.
(1)求a的值;
(2)当$1 < x < 3$时,求y的取值范围.
(1)求a的值;
(2)当$1 < x < 3$时,求y的取值范围.
答案:
(1) 由题意得$2a + 3 = 6$,$\therefore a = \frac{3}{2}$
(2) $\because k = 6 > 0$,$\therefore$在每个象限内,$y$随$x$的增大而减小,又$\because$当$x = 1$时,$y = 6$,当$x = 3$时,$y = 2$,$\therefore$当$1 < x < 3$时,$2 < y < 6$
(1) 由题意得$2a + 3 = 6$,$\therefore a = \frac{3}{2}$
(2) $\because k = 6 > 0$,$\therefore$在每个象限内,$y$随$x$的增大而减小,又$\because$当$x = 1$时,$y = 6$,当$x = 3$时,$y = 2$,$\therefore$当$1 < x < 3$时,$2 < y < 6$
14.平面直角坐标系中,A($x_1$,$y_1$),B($x_2$,$y_2$),C($x_3$,$y_3$)是反比例函数$y = \frac{k}{x}$图象上的三点,且$x_1 + x_2 = 0$.
(1)若$x_1y_2 = - 2$,求k的值;
(2)若$x_1 = y_3$,求证:$x_3 + y_2 = 0$.
(1)若$x_1y_2 = - 2$,求k的值;
(2)若$x_1 = y_3$,求证:$x_3 + y_2 = 0$.
答案:
(1) $\because x_1 + x_2 = 0$,$\therefore x_1 = -x_2$. 又$\because x_1y_2 = -2$,$\therefore -x_2y_2 = -2$,$\therefore x_2y_2 = 2$,$\therefore k = 2$
(2) 由题意,可知$x_3y_3 = k$,$\therefore x_3 = \frac{k}{y_3}$,$\therefore x_3 + y_2 = \frac{k}{y_3} + y_2$. $\because x_1 = y_3$,$\therefore x_3 + y_2 = \frac{k}{y_1} + y_2 = y_1 + y_2$. 又$\because x_1 + x_2 = 0$,$\therefore \frac{k}{y_1} + \frac{k}{y_2} = \frac{k}{y_1y_2}(y_1 + y_2) = 0$. $\because k \neq 0$,$y_1y_2 \neq 0$,$\therefore y_1 + y_2 = 0$,$\therefore x_3 + y_2 = 0$
(1) $\because x_1 + x_2 = 0$,$\therefore x_1 = -x_2$. 又$\because x_1y_2 = -2$,$\therefore -x_2y_2 = -2$,$\therefore x_2y_2 = 2$,$\therefore k = 2$
(2) 由题意,可知$x_3y_3 = k$,$\therefore x_3 = \frac{k}{y_3}$,$\therefore x_3 + y_2 = \frac{k}{y_3} + y_2$. $\because x_1 = y_3$,$\therefore x_3 + y_2 = \frac{k}{y_1} + y_2 = y_1 + y_2$. 又$\because x_1 + x_2 = 0$,$\therefore \frac{k}{y_1} + \frac{k}{y_2} = \frac{k}{y_1y_2}(y_1 + y_2) = 0$. $\because k \neq 0$,$y_1y_2 \neq 0$,$\therefore y_1 + y_2 = 0$,$\therefore x_3 + y_2 = 0$
15.反比例函数$y = \frac{k}{x}$在第一象限的图象如图所示,过点A(1,0)作x轴的垂线,交反比例函数$y = \frac{k}{x}$的图象于点M,$\triangle AOM$的面积为3.
(1)求反比例函数的解析式;
(2)设点B的坐标为(t,0),其中$t > 1$,若以AB为一边的正方形有一个顶点在反比例函数$y = \frac{k}{x}$的图象上,请直接写出t的值.

(1)求反比例函数的解析式;
(2)设点B的坐标为(t,0),其中$t > 1$,若以AB为一边的正方形有一个顶点在反比例函数$y = \frac{k}{x}$的图象上,请直接写出t的值.
答案:
(1) $\because$点$A(1, 0)$,$\triangle AOM$的面积为3,$\therefore OA = 1$,$\frac{1}{2}OA \cdot AM = 3$,$\therefore AM = 6$,$\therefore M(1, 6)$. 将$M(1, 6)$代入反比例函数解析式,得$k = 6$,$\therefore$反比例函数的解析式$y = \frac{6}{x}$
(2) $t = 3$或7
(1) $\because$点$A(1, 0)$,$\triangle AOM$的面积为3,$\therefore OA = 1$,$\frac{1}{2}OA \cdot AM = 3$,$\therefore AM = 6$,$\therefore M(1, 6)$. 将$M(1, 6)$代入反比例函数解析式,得$k = 6$,$\therefore$反比例函数的解析式$y = \frac{6}{x}$
(2) $t = 3$或7
查看更多完整答案,请扫码查看