1.(2024·河南模拟)如图,在矩形ABCD中,AB = CD = 5,点G是对角线AC上一点,AG = $\frac{1}{5}AC$,延长DG交AB于点E,过点C作CF⊥DE,交DE于点O,交AD于点F,点H是CD的中点,连接OH.
(1)问题提出:
①如图1,若AB = AD,则OH = ,DF = ;
②如图2,若BC = $\frac{3}{5}AB$,求OH和DF的长度;
(2)推广应用:
若BC = $\frac{n}{5}AB$,请直接写出OH和DF的长.(用已知数或含n的式子表示)


(1)问题提出:
①如图1,若AB = AD,则OH = ,DF = ;
②如图2,若BC = $\frac{3}{5}AB$,求OH和DF的长度;
(2)推广应用:
若BC = $\frac{n}{5}AB$,请直接写出OH和DF的长.(用已知数或含n的式子表示)
答案:
$\frac{5}{2}$@@$\frac{5}{4}$@@$OH = \frac{1}{2}CD = \frac{5}{2}$, 可证 $\triangle AEG \sim \triangle CDG$, $\therefore \frac{AG}{CG} = \frac{AE}{CD} = \frac{1}{4}$, $\therefore AE = \frac{5}{4}$, $\because \angle ADE + \angle CDE = \angle CDE + \angle DCF = 90^{\circ}$, $\therefore \angle ADE = \angle DCF$, $\because \angle DAE = \angle CDF = 90^{\circ}$, $\therefore \triangle ADE \sim \triangle DCF$, $\therefore \frac{AD}{CD} = \frac{AE}{DF}$, $\because$ 矩形 $ABCD$ 中, $BC = AD = \frac{3}{5}AB = 3$, $\therefore DF = \frac{AE \cdot CD}{AD} = \frac{\frac{5}{4} \times 5}{3} = \frac{25}{12}$@@$OH = \frac{5}{2}$, $DF = \frac{25}{4n}$
2.(河南中考)在△ABC中,CA = CB,∠ACB = α.点P是平面内不与点A,C重合的任意一点.连接AP,将线段AP绕点P逆时针旋转α得到线段DP,连接AD,BD,CP.
(1)观察猜想:如图①,当α = 60°时,$\frac{BD}{CP}$的值是 ,直线BD与直线CP相交所成的较小角的度数是 ;
(2)类比探究:如图②,当α = 90°时,请写出$\frac{BD}{CP}$的值及直线BD与直线CP相交所成的较小角的度数,并就图②的情形说明理由;
(3)解决问题:当α = 90°时,若点E,F分别是CA,CB的中点,点P在直线EF上,请直接写出点C,P,D在同一直线上时$\frac{AD}{CP}$的值.

(1)观察猜想:如图①,当α = 60°时,$\frac{BD}{CP}$的值是 ,直线BD与直线CP相交所成的较小角的度数是 ;
(2)类比探究:如图②,当α = 90°时,请写出$\frac{BD}{CP}$的值及直线BD与直线CP相交所成的较小角的度数,并就图②的情形说明理由;
(3)解决问题:当α = 90°时,若点E,F分别是CA,CB的中点,点P在直线EF上,请直接写出点C,P,D在同一直线上时$\frac{AD}{CP}$的值.
答案:
1@@$60^{\circ}$@@设 $BD$ 交 $AC$ 于点 $O$, $BD$ 交 $PC$ 于点 $E$. $\because \angle PAD = \angle CAB = 45^{\circ}$, $\therefore \angle PAC = \angle DAB$, $\because \frac{AB}{AC} = \frac{AD}{AP} = \sqrt{2}$, $\therefore \triangle DAB \sim \triangle PAC$, $\therefore \angle PCA = \angle DBA$, $\frac{BD}{PC} = \frac{AB}{AC} = \sqrt{2}$, $\because \angle EOC = \angle AOB$, $\therefore \angle CEO = \angle OAB = 45^{\circ}$, $\therefore$ 直线 $BD$ 与直线 $CP$ 相交所成的较小角的度数为 $45^{\circ}$@@如图③ - 1 中, 当点 $D$ 在线段 $PC$ 上时, $\therefore \frac{AD}{CP} = 2 - \sqrt{2}$. 如图③ - 2 中, 当点 $P$ 在线段 $CD$ 上时, $\frac{AD}{PC} = 2 + \sqrt{2}$. 综上所述, $\frac{AD}{CP}$ 的值为 $2 - \sqrt{2}$ 或 $2 + \sqrt{2}$

1@@$60^{\circ}$@@设 $BD$ 交 $AC$ 于点 $O$, $BD$ 交 $PC$ 于点 $E$. $\because \angle PAD = \angle CAB = 45^{\circ}$, $\therefore \angle PAC = \angle DAB$, $\because \frac{AB}{AC} = \frac{AD}{AP} = \sqrt{2}$, $\therefore \triangle DAB \sim \triangle PAC$, $\therefore \angle PCA = \angle DBA$, $\frac{BD}{PC} = \frac{AB}{AC} = \sqrt{2}$, $\because \angle EOC = \angle AOB$, $\therefore \angle CEO = \angle OAB = 45^{\circ}$, $\therefore$ 直线 $BD$ 与直线 $CP$ 相交所成的较小角的度数为 $45^{\circ}$@@如图③ - 1 中, 当点 $D$ 在线段 $PC$ 上时, $\therefore \frac{AD}{CP} = 2 - \sqrt{2}$. 如图③ - 2 中, 当点 $P$ 在线段 $CD$ 上时, $\frac{AD}{PC} = 2 + \sqrt{2}$. 综上所述, $\frac{AD}{CP}$ 的值为 $2 - \sqrt{2}$ 或 $2 + \sqrt{2}$
查看更多完整答案,请扫码查看