第90页
- 第4页
- 第5页
- 第6页
- 第7页
- 第8页
- 第9页
- 第10页
- 第11页
- 第12页
- 第13页
- 第14页
- 第15页
- 第16页
- 第17页
- 第18页
- 第19页
- 第20页
- 第21页
- 第22页
- 第23页
- 第24页
- 第25页
- 第26页
- 第27页
- 第28页
- 第29页
- 第30页
- 第31页
- 第32页
- 第33页
- 第34页
- 第35页
- 第36页
- 第37页
- 第38页
- 第39页
- 第40页
- 第41页
- 第42页
- 第43页
- 第44页
- 第45页
- 第46页
- 第47页
- 第48页
- 第49页
- 第50页
- 第51页
- 第52页
- 第53页
- 第54页
- 第55页
- 第56页
- 第57页
- 第58页
- 第59页
- 第60页
- 第61页
- 第62页
- 第63页
- 第64页
- 第65页
- 第66页
- 第67页
- 第68页
- 第69页
- 第70页
- 第71页
- 第72页
- 第73页
- 第74页
- 第75页
- 第76页
- 第77页
- 第78页
- 第79页
- 第80页
- 第81页
- 第82页
- 第83页
- 第84页
- 第85页
- 第86页
- 第87页
- 第88页
- 第89页
- 第90页
- 第91页
- 第92页
- 第93页
- 第94页
- 第95页
- 第96页
- 第97页
- 第98页
- 第99页
- 第100页
- 第101页
- 第102页
- 第103页
- 第104页
- 第105页
- 第106页
- 第107页
- 第108页
- 第109页
- 第110页
- 第111页
- 第112页
- 第113页
- 第114页
- 第115页
- 第116页
- 第117页
- 第118页
- 第119页
- 第120页
- 第121页
- 第122页
- 第123页
- 第124页
- 第125页
- 第126页
- 第127页
1. 已知$a、b$互为倒数,则代数式$\frac{a^{2}-2ab + b^{2}}{a - b}\div(\frac{1}{b}-\frac{1}{a})$的值为________.
答案:
1
2. (2024·遂宁)先化简:$(1 - \frac{1}{x - 1})\div\frac{x - 2}{x^{2}-2x + 1}$,再从1、2、3中选择一个合适的数作为$x$的值代入求值.
答案:
原式 = $x - 1$. 由题意,得 $x - 1 \neq 0$,$x - 2 \neq 0$,$x^{2} - 2x + 1 \neq 0$,$\therefore x \neq 1$,$x \neq 2$. $\therefore x$的值只能取3. 此时原式 = 2
3. 若$x+\frac{1}{x}=\frac{13}{6}$,且$0<x<1$,则$x^{2}-\frac{1}{x^{2}}$的值为________.
答案:
$-\frac{65}{36}$ 解析:$\because 0 < x < 1$,$\therefore x < \frac{1}{x}$. $\therefore x - \frac{1}{x} < 0$. $\because x + \frac{1}{x} = \frac{13}{6}$,$\therefore (x + \frac{1}{x})^{2} = \frac{169}{36}$,即 $x^{2} + 2 + \frac{1}{x^{2}} = \frac{169}{36}$. $\therefore x^{2} - 2 + \frac{1}{x^{2}} = \frac{169}{36} - 4$. $\therefore (x - \frac{1}{x})^{2} = \frac{25}{36}$. $\therefore x - \frac{1}{x} = -\frac{5}{6}$. $\therefore x^{2} - \frac{1}{x^{2}} = (x + \frac{1}{x})(x - \frac{1}{x}) = \frac{13}{6} \times (-\frac{5}{6}) = -\frac{65}{36}$.
4. 已知$y>x>0$,$x^{2}+y^{2}=4xy$,求$\frac{x + y}{x - y}$的值.
答案:
$\because x^{2} + y^{2} = 4xy$,$\therefore x^{2} + 2xy + y^{2} = 6xy$,$x^{2} - 2xy + y^{2} = 2xy$. $\therefore (x + y)^{2} = 6xy$,$(x - y)^{2} = 2xy$. $\therefore \frac{(x + y)^{2}}{(x - y)^{2}} = \frac{6xy}{2xy}$,即 $(\frac{x + y}{x - y})^{2} = 3$. $\because y > x > 0$,$\therefore \frac{x + y}{x - y} < 0$. $\therefore \frac{x + y}{x - y} = -\sqrt{3}$
5. (2024·大庆)若$a+\frac{1}{a}=\sqrt{5}$,则$a^{2}+\frac{1}{a^{2}}=$________.
答案:
3
6. (2024·北京)先化简,再求值:$\frac{3(a - 2b)+3b}{a^{2}-2ab + b^{2}}$,其中$a、b$满足$a - b - 1 = 0$.
答案:
原式 = $\frac{3}{a - b}$. $\because a - b - 1 = 0$,$\therefore a - b = 1$. $\therefore$原式 = 3
7. 已知$\frac{1}{a}+\frac{1}{b}=\frac{1}{2}$,$\frac{1}{b}+\frac{1}{c}=\frac{1}{3}$,$\frac{1}{a}+\frac{1}{c}=\frac{1}{4}$,求$\frac{abc}{ab + bc + ac}$的值.
答案:
$\because \frac{1}{a} + \frac{1}{b} = \frac{1}{2}$,$\frac{1}{b} + \frac{1}{c} = \frac{1}{3}$,$\frac{1}{a} + \frac{1}{c} = \frac{1}{4}$,$\therefore \frac{1}{a} + \frac{1}{b} + \frac{1}{b} + \frac{1}{c} + \frac{1}{a} + \frac{1}{c} = \frac{1}{2} + \frac{1}{3} + \frac{1}{4}$,即 $\frac{2}{a} + \frac{2}{b} + \frac{2}{c} = \frac{13}{12}$. $\therefore \frac{1}{a} + \frac{1}{b} + \frac{1}{c} = \frac{13}{24}$. 根据题意,得 $abc \neq 0$,$\therefore \frac{abc}{ab + bc + ac} = \frac{abc \div abc}{(ab + bc + ac) \div abc} = \frac{1}{\frac{1}{c} + \frac{1}{a} + \frac{1}{b}} = \frac{24}{13}$
查看更多完整答案,请扫码查看