【题目】如果把一个自然数各数位上数字从最高位到个位依次排出一串数字,与从个位到最高位依次排出的一串数字完全相同,那么我们把这样的自然数叫做 “和谐数”.例如:自然数64746从最高位到个位排出的一串数字是:6、4、7、4、6,从个位到最高排出的一串数字也是:6、4、7、4、6,所64746是“和谐数”.再如:33,181,212,4664,…,都是“和谐数”.
(1)请你直接写出3个四位“和谐数”,猜想任意一个四位“和谐数”能否被11整除,并说明理由;[来。
(2) 已知一个能被11整除的三位“和谐数”,设个位上的数字为x(
,x为自然数),十位上的数字为y,求y与x的函数关系式.
参考答案:
【答案】见解析,能被11整除;y=2x(1≤x≤4)
【解析】试题分析:根据“和谐数”的定义写出数字,然后设“和谐数”的形式为abcd,则根据题意得出a=d,b=c,然后将这个四位数除以11,将其化成代数式的形式,用a和b来表示c和d,然后得出答案,进行说明能被11整除;首先设三位“和谐数”为zyx,根据定义得出x=z,然后根据同上的方法进行计算.
试题解析:⑴、四位“和谐数”:1221,1331,1111,6666…(答案不唯一)
任意一个四位“和谐数”都能被11整数,理由如下:
设任意四位“和谐数”形式为:
,则满足:
最高位到个位排列:
个位到最高位排列: ![]()
由题意,可得两组数据相同,则: ![]()
则![]()
∴ 四位“和谐数”
能被11整数 又∵
为任意自然数,
∴任意四位“和谐数”都可以被11整除
⑵、设能被11整除的三位“和谐数”为:
,则满足:个位到最高位排列: ![]()
最高位到个位排列:
由题意,两组数据相同,则:
故![]()
为正整数 ∴![]()
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知:如图,四边形ABCD中,AD⊥DC,BC⊥AB,AE平分∠BAD,CF平分∠DCB,AE交CD于E,CF交AB于F,问AE与CF是否平行?为什么?
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知甲村和乙村靠近公路a、b,为了发展经济,甲乙两村准备合建一个工厂,经协商,工厂必须满足以下要求:

(1)到两村的距离相等;
(2)到两条公路的距离相等.你能帮忙确定工厂的位置吗?
-
科目: 来源: 题型:
查看答案和解析>>【题目】某公园的门票价格如下表所示:

某校九年级甲、乙两个班共100多人去该公园举行毕业联欢活动,其中甲班有50多人,乙班不足50人,如果以班为单位分别买门票,两个班一共应付920元;如果两个班联合起来作为一个团体购票,一共要付515元,问甲、乙两班分别有多少人?
-
科目: 来源: 题型:
查看答案和解析>>【题目】在平面直角坐标系中,菱形OABC的OC边落在x轴上,∠AOC=60°,OA=60
.若菱形OABC内部(边界及顶点除外)的一格点P(x,y)满足:x2﹣y2=90x﹣90y,就称格点P为“好点”,则菱形OABC内部“好点”的个数为( )(注:所谓“格点”,是指在平面直角坐标系中横、纵坐标均为整数的点.)

A. 145 B. 146 C. 147 D. 148
-
科目: 来源: 题型:
查看答案和解析>>【题目】荣昌公司要将本公司100吨货物运往某地销售,经与春晨运输公司协商,计划租用甲、乙两种型号的汽车共6辆,用这6辆汽车一次将货物全部运走,其中每辆甲型汽车最多能装该种货物16吨,每辆乙型汽车最多能装该种货物18吨.已知租用1辆甲型汽车和2辆乙型汽车共需费用2500元;租用2辆甲型汽车和1辆乙型汽车共需费用2450元,且同一种型号汽车每辆租车费用相同.
(1)求租用一辆甲型汽车、一辆乙型汽车的费用分别是多少元?
(2)若荣昌公司计划此次租车费用不超过5000元.通过计算求出该公司有几种租车方案?请你设计出来,并求出最低的租车费用.
-
科目: 来源: 题型:
查看答案和解析>>【题目】某中学库存若干套桌椅,准备修理后支援贫困山区学校。现有甲、乙两木工组,甲每天修理桌椅16套,乙每天修桌椅比甲多8套,甲单独修完这些桌椅比乙单独修完多用20天,学校每天付甲组80元修理费,付乙组120元修理费。
(1)该中学库存多少套桌椅?
(2)在修理过程中,学校要派一名工人进行质量监督,学校负担他每天10元生活补助费,现有三种修理方案:a、由甲单独修理;b、由乙单独修理;c、甲、乙合作同时修理。你认为哪种方案省时又省钱?为什么?
相关试题