【题目】如图所示,在长为a米,宽为b米的长方形地面上修两条同样宽的道路,余下的部分作为绿化地,路宽为x米. ![]()
(1)用代数式表示绿化地的面积.
(2)若a=63,b=43,x=3,绿化地每平方米为15元,道路每平方米150元,计算该工程需花费多少元?
参考答案:
【答案】
(1)解:绿化地的面积是(a﹣x)(b﹣x)m2
(2)解:∵a=63,b=43,x=3,绿化地每平方米为15元,道路每平方米150元,
∴该工程需花费的钱数为:15(a﹣x)(b﹣x)+150(ax+bx+x2)
=15×(63﹣3)×(43﹣3)+150×(63×3+43×3+9)
=82050(元)
【解析】(1)根据图形列出算式即可;(2)先列出算式,再代入求出即可.
【考点精析】掌握代数式求值是解答本题的根本,需要知道求代数式的值,一般是先将代数式化简,然后再将字母的取值代入;求代数式的值,有时求不出其字母的值,需要利用技巧,“整体”代入.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,⊙O为△ABC的外接圆,直线l与⊙O相切与点P,且l∥BC.
(1)请仅用无刻度的直尺,在⊙O中画出一条弦,使这条弦将△ABC分成面积相等的两部分(保留作图痕迹,不写作法);
(2)请写出证明△ABC被所作弦分成的两部分面积相等的思路.

-
科目: 来源: 题型:
查看答案和解析>>【题目】下列各近似数精确到万位的是( )
A.35000
B.4亿5千万
C.8.9×104
D.4×104 -
科目: 来源: 题型:
查看答案和解析>>【题目】问题提出:用n根相同的木棒搭一个三角形(木棒无剩余),能搭成多少种不同的等腰三角形?
问题探究:不妨假设能搭成
种不同的等腰三角形,为探究
之间的关系,我们可以从特殊入手,通过试验、观察、类比,最后归纳、猜测得出结论.探究一:
(1)用3根相同的木棒搭成一个三角形,能搭成多少种不同的三角形?
此时,显然能搭成一种等腰三角形。所以,当
时,
(2)用4根相同的木棒搭成一个三角形,能搭成多少种不同的三角形?
只可分成1根木棒、1根木棒和2根木棒这一种情况,不能搭成三角形
所以,当
时,
(3)用5根相同的木棒搭成一个三角形,能搭成多少种不同的三角形?
若分成1根木棒、1根木棒和3根木棒,则不能搭成三角形
若分为2根木棒、2根木棒和1根木棒,则能搭成一种等腰三角形
所以,当
时,
(4)用6根相同的木棒搭成一个三角形,能搭成多少种不同的三角形?
若分成1根木棒、1根木棒和4根木棒,则不能搭成三角形
若分为2根木棒、2根木棒和2根木棒,则能搭成一种等腰三角形
所以,当
时,
综上所述,可得表①

3
4]
5
6

1
0
1
1
探究二:
(1)用7根相同的木棒搭成一个三角形,能搭成多少种不同的等腰三角形?
(仿照上述探究方法,写出解答过程,并把结果填在表②中)
(2)分别用8根、9根、10根相同的木棒搭成一个三角形,能搭成多少种不同的等腰三
角形?(只需把结果填在表②中)

7
8
9
10

你不妨分别用11根、12根、13根、14根相同的木棒继续进行探究,……
解决问题:用
根相同的木棒搭一个三角形(木棒无剩余),能搭成多少种不同的等腰三角形?(设
分别等于
、
、
、
,其中
是整数,把结果填在表③中)





问题应用:用2016根相同的木棒搭一个三角形(木棒无剩余),能搭成多少种不同的等腰三角形?(要求写出解答过程)其中面积最大的等腰三角形每个腰用了__________________根木棒。(只填结果)
-
科目: 来源: 题型:
查看答案和解析>>【题目】在每个小正方形的边长为1的网格中,点A,B,C,D均在格点上,点E,F分别为线段BC,DB上的动点,且BE=DF.
(1)如图①所示,当BE=
时,计算AE+AF的值等于____;
(2)当AE+AF取最小值时,请在如图②所示的网格中,用无刻度的直尺,画出线段AE,AF,并简要说明点E和点F的位置是如何找到的(不要求证明)
-
科目: 来源: 题型:
查看答案和解析>>【题目】等腰三角形一边长等于5,一边长等于9,则它的周长是( )
A. 14 B. 23 C. 19 D. 19或23
-
科目: 来源: 题型:
查看答案和解析>>【题目】某中学为了绿化校园,计划购买一批榕树和香樟树,经市场调查,榕树的单价比香樟树少20元,购买3棵榕树和2棵香樟树共需340元.
(1)榕树和香樟树的单价各是多少?
(2)根据学校实际情况,需购买两种树苗共150棵,总费用不超过10840元,且购买香樟树的棵数不少于榕树的1.5倍,请你算算该校本次购买榕树和香樟树共有哪几种方案.
相关试题