【题目】如图,将正方形 OABC 放在平面直角坐标系中,O 是原点,A 的坐标为(1,
),则点C 的坐标为( )
![]()
A. (﹣1,
) B. (
,1) C. (
,3) D. (
,2)
参考答案:
【答案】B
【解析】
过点A作AD⊥x轴于D,过点C作CE⊥x轴于E,根据同角的余角相等求出∠OAD=∠COE,再利用“角角边”证明△AOD和△OCE全等,根据全等三角形对应边相等可得OE=AD,CE=OD,然后根据点C在第二象限写出坐标即可.
如图,过点A作AD⊥x轴于D,过点C作CE⊥x轴于E,
![]()
∵四边形OABC是正方形,
∴OA=OC,∠AOC=90°,
∴∠COE+∠AOD=90°,
又∵∠OAD+∠AOD=90°,
∴∠OAD=∠COE,
在△AOD和△OCE中,
,
∴△AOD≌△OCE(AAS),
∴OE=AD=
,CE=OD=1,
∵点C在第二象限,
∴点C的坐标为(-
,1).
故选:B.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,CN是等边△
的外角
内部的一条射线,点A关于CN的对称点为D,连接AD,BD,CD,其中AD,BD分别交射线CN于点E,P.(1)依题意补全图形;
(2)若
,求
的大小(用含
的式子表示);(3)用等式表示线段
,
与
之间的数量关系,并证明.
-
科目: 来源: 题型:
查看答案和解析>>【题目】用适当的方法解方程:x2﹣6x+9=(5﹣2x)2 .
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,在△ABC和△EDC中,AC=CE=CB=CD;∠ACB=∠DCE=90°,AB与CE交于F,ED与AB,BC,分别交于M,H.

(1)求证:CF=CH;
(2)如图2,△ABC不动,将△EDC绕点C旋转到∠BCE=45°时,试判断四边形ACDM是什么四边形?并证明你的结论. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,抛物线y=x2+bx+c与x轴交于A(﹣1,0),B(3,0)两点.

(1)求该抛物线的解析式;
(2)求该抛物线的对称轴以及顶点坐标;
(3)设(1)中的抛物线上有一个动点P,当点P在该抛物线上滑动到什么位置时,满足S△PAB=8,并求出此时P点的坐标. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,A、B、C、D为矩形的四个顶点,AB=16cm,AD=6cm,动点P、Q分别从点A、C同时出发,点P以3cm/s的速度向点B移动,一直到达B为止,点Q以2 cm/s的速度向D移动.

(1)P、Q两点从出发开始到几秒?四边形PBCQ的面积为33cm2;
(2)P、Q两点从出发开始到几秒时?点P和点Q的距离是10cm. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图所示,直线 y=x+2 与两坐标轴分别交于A、B 两点,点 C 是 OB 的中点,D、E 分 别是直线 AB、y 轴上的动点,则△CDE 周长的最小值是________.

相关试题