【题目】(10分)如图1,在△ABC中,∠ACB为锐角,点D为射线BC上一点,连接AD,以AD为一边且在AD的右侧作正方形ADEF.(提示:正方形的四条边都相等,四个角都是直角)
(1)如果AB=AC,∠BAC=90°,
①当点D在线段BC上时(与点B不重合),如图2,线段CF、BD所在直线的位置关系为______,线段CF、BD的数量关系为______;
②当点D在线段BC的延长线上时,如图3,①中的结论是否仍然成立,并说明理由;
(2)如果AB≠AC,∠BAC是锐角,点D在线段BC上,当∠ACB满足 条件时,CF⊥BC(点C、F不重合),并说明理由.
![]()
参考答案:
【答案】(1)垂直,相等;(2)45°
【解析】试题分析:(1)①证明△BAD≌△CAF,可得:BD=CF,∠B=∠ACF=45°,则∠BCF=∠ACB+∠ACF=90°,所以BD与CF相等且垂直;②①的结论仍成立,同理证明△DAB≌△FAC,可得结论:垂直且相等;
(2)、当∠ACB满足45°时,CF⊥BC;如图4,作辅助线,证明△QAD≌△CAF,即可得出结论.
试题解析:(1)、①CF与BD位置关系是垂直,数量关系是相等,
理由是: 如图2,∵四边形ADEF是正方形, ∴AD=AF,∠DAF=90°, ∴∠DAC+∠CAF=90°, ∵AB=AC,∠BAC=90°,∴∠BAD+∠DAC=90°,且∠B=∠ACB=45°,∴∠CAF=∠BAD, ∴△BAD≌△CAF,
∴BD=CF,∠B=∠ACF=45°, ∴∠ACB+∠ACF=45°+45°=90°,即∠BCF=90°,∴BC⊥CF,即BD⊥CF;
②当点D在BC的延长线上时,①的结论仍成立,理由是:
如图3,由正方形ADEF得AD=AF,∠DAF=90°, ∵∠BAC=90°, ∴∠DAF=∠BAC,
∴∠DAB=∠FAC, 又∵AB=AC, ∴△DAB≌△FAC, ∴CF=BD, ∠ACF=∠ABD,
∵∠BAC=90°,AB=AC, ∴∠ABC=45°, ∴∠ACF=∠ABC=45° ∴∠BCF=∠ACB+∠ACF=90°,
即CF⊥BD;
(2)、当∠BCA=45°时,CF⊥BD,理由是: 如图4,过点A作AQ⊥AC,交BC于点Q, ∵∠BCA=45°, ∴∠AQC=45°, ∴∠AQC=∠BCA, ∴AC=AQ,
∵AD=AF,∠QAC=∠DAF=90°, ∴∠QAC﹣∠DAC=∠DAF﹣∠DAC, ∴∠QAD=∠CAF,
∴△QAD≌△CAF, ∴∠ACF=∠AQD=45°, ∠BCF=∠ACB+∠ACF=90°, 即CF⊥BD.
![]()
-
科目: 来源: 题型:
查看答案和解析>>【题目】在同一平面内,如果两条直线都和第三条直线垂直,那么这两条直线( )
A. 互相垂直 B. 互相平行 C. 相交 D. 相等
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知关于x的一元二次方程x2+ax﹣(m﹣1)(m+2)=0,对于任意实数a都有实数根,则m的取值范围是 .
-
科目: 来源: 题型:
查看答案和解析>>【题目】某种绿豆在相同条件下发芽的实验结果如下表,根据表中数据估计这种绿豆发芽的概率约是 (保留两位小数).
每批粒数
2
10
50
100
500
1000
2000
3000
发芽的粒数
2
9
44
92
463
928
1866
2794
发芽的频率
1
0.9
0.88
0.92
0.926
0.928
0.933
0.931
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,长方形ABCD中,AB=8,AD=4.点Q与点P同时从点A出发,点Q以每秒1个单位的速度沿A→D→C→B的方向运动,点P以每秒3个单位的速度沿A→B→C→D的方向运动,当P,Q两点相遇时,它们同时停止运动.设Q点运动的时间为x(秒),在整个运动过程中,当△APQ为直角三角形时,则相应的x的值或取值范围是_______________.

-
科目: 来源: 题型:
查看答案和解析>>【题目】石墨烯是现在世界上最薄的纳米材料,其理论厚度仅是0.00000000034m,这个数用科学记数法表示正确的是( )
A.3.4×10-9m
B.0.34×10-9m
C.3.4×10-10m
D.3.4×10-11m -
科目: 来源: 题型:
查看答案和解析>>【题目】下列运算中,正确的是( )
A.4x-x=2x
B.2x·x4=x5
C.x2y÷y=x2
D.(-3x)3=-9x3
相关试题