【题目】四边形ABCD中,对角线AC、BD交于点O,给出下列四组条件:①AB∥CD,AD∥BC;②AB∥CD,∠A=∠C;③AO=CO,BO=DO;④AB∥CD,AD=BC.
一定能判定四边形ABCD是平行四边形的条件有----------------------------( )
A. 1组 B. 2组 C. 3组 D. 4组
参考答案:
【答案】C
【解析】如图,(1)∵AB∥CD,AD∥BC,
∴四边形ABCD是平行四边形;
(2)∵AB∥CD,
∴∠ABC+∠BCD=180°,
又∵∠BAD=∠BCD,
∴∠BAD+∠ABC=180°,
∴AD∥BC,
∴四边形ABCD是平行四边形;
(3)∵在四边形ABCD中,AO=CO,BO=DO,
∴四边形ABCD是平行四边形;
(4)∵在四边形ABCD中,AB∥CD,AD=BC,
∴四边形ABCD可能是等腰梯形,也可能是平行四边形;
综上所述,上述四组条件一定能判定四边形ABCD是平行四边形的有3组.
故选C.
![]()
-
科目: 来源: 题型:
查看答案和解析>>【题目】为了解某市市民“绿色出行”方式的情况,某校数学兴趣小组以问卷调查的形式,随机调查了某市部分出行市民的主要出行方式(参与问卷调查的市民都只从以下五个种类中选择一类),并将调查结果绘制成如下不完整的统计图.
种类
A
B
C
D
E
出行方式
共享单车
步行
公交车
的士
私家车

根据以上信息,回答下列问题:
(1)参与本次问卷调查的市民共有 人,其中选择B类的人数有 人;
(2)在扇形统计图中,求A类对应扇形圆心角α的度数,并补全条形统计图;
(3)该市约有12万人出行,若将A,B,C这三类出行方式均视为“绿色出行”方式,请估计该市“绿色出行”方式的人数.
-
科目: 来源: 题型:
查看答案和解析>>【题目】某旅游团上午6时从旅馆出发,乘汽车到距离210km的某著名旅游景点游玩,该汽车离旅馆的距离S(km)与时间t(h)的关系可以用如图的折线表示.根据图象提供的有关信息,解答下列问题:

(1)求该团去景点时的平均速度是多少?
(2)该团在旅游景点游玩了多少小时?
(3)求返回到宾馆的时刻是几时几分? -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在
ABCD中,∠DAB=60°,点E,F分别在CD,AB的延长线上,且AE=AD,CF=CB. 
(1)求证:四边形AFCE是平行四边形.
(2)若去掉已知条件的“∠DAB=60°,上述的结论还成立吗 ”若成立,请写出证明过程;若不成立,请说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】在矩形ABCD中,AB=3,将△ABD沿对角线BD对折,得到△EBD,DE与BC交于点 F,∠ADB=30°,则EF=---------------------------------------------( )

A. 3
B. 2
C. 3 D. 
-
科目: 来源: 题型:
查看答案和解析>>【题目】本市新建一座圆形人工湖,为测量该湖的半径,小杰和小丽沿湖边选取A,B,C三根木柱,使得A,B之间的距离与A,C之间的距离相等,并测得BC长为120米,A到BC的距离为4米,如图所示.

(1)请你帮他们求出该湖的半径;
(2)如果在圆周上再另取一点P,建造一座连接B,C,P三点的三角形艺术桥,且△BCP为直角三角形,问:这样的P点可以有几处?如何找到? -
科目: 来源: 题型:
查看答案和解析>>【题目】在一次期中考试中,
(1)一个班级有甲、乙、丙三名学生,分别得到70分、80分、90分.这三名同学的平均得分是多少?
(2)一个班级共有40名学生,其中5人得到70分,20人得到80分,15人得到90分.求班级的平均得分.
(3)一个班级中,20%的学生得到70分,50%的学生得到80分,30%的学生得到90分.求班级的平均得分.
(4)中考的各学科的分值依次为:数学150分,语文150分,物理100分,政治50分,历史50分,合计总分为500分. 在这次期中考试中,各门学科的总分都设置为100分,现已知甲、乙两名学生的得分如下表:学科
数学
语文
物理
政治
历史
甲
80
90
80
80
70
乙
80
80
70
80
95
你认为哪名同学的成绩更理想,写出你的理由.
相关试题