【题目】如图1,△ACB、△AED都为等腰直角三角形,∠AED=∠ACB=90°,点D在AB上,连CE,M、N分别为BD、CE的中点.
(1)求证:MN⊥CE;
(2)如图2将△AED绕A点逆时针旋转30°,求证:CE=2MN.
![]()
参考答案:
【答案】(1)证明见解析;(2)证明见解析.
【解析】试题分析:(1)延长DN交AC于F,连BF,推出DE∥AC,推出△EDN∽△CFN,推出
,求出DN=FN,FC=ED,得出MN是中位线,推出MN∥BF,证△CAE≌△BCF,推出∠ACE=∠CBF,求出∠CBF+∠BCE=90°,即可得出答案;
(2)延长DN到G,使DN=GN,连接CG,延长DE、CA交于点K,求出BG=2MN,证△CAE≌△BCG,推出BG=CE,即可得出答案.
试题解析:
(1)证明:延长DN交AC于F,连BF,
![]()
∵N为CE中点,
∴EN=CN,
∵△ACB和△AED是等腰直角三角形,∠AED=∠ACB=90°,DE=AE,AC=BC,
∴∠EAD=∠EDA=∠BAC=45°,
∴DE∥AC,
∴△EDN∽△CFN,
∴
,
∵EN=NC,
∴DN=FN,FC=ED,
∴MN是△BDF的中位线,
∴MN∥BF,
∵AE=DE,DE=CF,
∴AE=CF,
∵∠EAD=∠BAC=45°,
∴∠EAC=∠ACB=90°,
在△CAE和△BCF中,
,
∴△CAE≌△BCF(SAS),
∴∠ACE=∠CBF,
∵∠ACE+∠BCE=90°,
∴∠CBF+∠BCE=90°,
即BF⊥CE,
∵MN∥BF,
∴MN⊥CE.
(2)证明:延长DN到G,使DN=GN,连接CG,延长DE、CA交于点K,
![]()
∵M为BD中点,
∴MN是△BDG的中位线,
∴BG=2MN,
在△EDN和CGN中,
,
∴△EDN≌△CGN(SAS),
∴DE=CG=AE,∠GCN=∠DEN,
∴DE∥CG,
∴∠KCG=∠CKE,
∵∠CAE=45°+30°+45°=120°,
∴∠EAK=60°,
∴∠CKE=∠KCG=30°,
∴∠BCG=120°,
在△CAE和△BCG中,
,
∴△CAE≌△BCG(SAS),
∴BG=CE,
∵BG=2MN,
∴CE=2MN.
-
科目: 来源: 题型:
查看答案和解析>>【题目】某校八年级(1)班全体学生进行了第一次体育中考模拟测试,成绩统计如下表:
成绩(分)
24
25
26
27
28
29
30
人数(人)
6
5
5
8
7
7
4
根据上表中的信息判断,下列结论中错误的是( )
A. 该班一共有42名同学
B. 该班学生这次考试成绩的众数是8
C. 该班学生这次考试成绩的平均数是27
D. 该班学生这次考试成绩的中位数是27分
-
科目: 来源: 题型:
查看答案和解析>>【题目】在由6个边长为1的小正方形组成的方格中:
(1)如图(1),A、B、C是三个格点(即小正方形的顶点),判断AB与BC的关系,并说明理由;
(2)如图(2),连结三格和两格的对角线,求∠α+∠β的度数(要求:画出示意图并给出证明)

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,Rt△ABE中,AB⊥AE以AB为直径作⊙O,交BE于C,弦CD⊥AB,F为AE上一点,连FC,则FC=FE
(1)求证:CF是⊙O的切线;
(2)已知点P为⊙O上一点,且tan∠APD=
,连CP,求sin∠CPD的值.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,海中有一小岛P,在距小岛P的
海里范围内有暗礁,一轮船自西向东航行,它在A处时测得小岛P位于北偏东60°,且A、P之间的距离为32海里,若轮船继续向正东方向航行,轮船有无触礁危险?请通过计算加以说明.如果有危险,轮船自A处开始至少沿东偏南多少度方向航行,才能安全通过这一海域?
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在Rt△ABC中,∠C=90°,以AC为直径作⊙O,交AB于D,过点O作OE∥AB,交BC于E.
(1)求证:ED为⊙O的切线;
(2)如果⊙O的半径为
,ED=2,延长EO交⊙O于F,连接DF、AF,求△ADF的面积.
【答案】(1)证明见解析;(2)
【解析】试题分析:(1)首先连接OD,由OE∥AB,根据平行线与等腰三角形的性质,易证得
≌
即可得
,则可证得
为
的切线;
(2)连接CD,根据直径所对的圆周角是直角,即可得
利用勾股定理即可求得
的长,又由OE∥AB,证得
根据相似三角形的对应边成比例,即可求得
的长,然后利用三角函数的知识,求得
与
的长,然后利用S△ADF=S梯形ABEF-S梯形DBEF求得答案.试题解析:(1)证明:连接OD,

∵OE∥AB,
∴∠COE=∠CAD,∠EOD=∠ODA,
∵OA=OD,
∴∠OAD=∠ODA,
∴∠COE=∠DOE,
在△COE和△DOE中,
∴△COE≌△DOE(SAS),
∴ED⊥OD,
∴ED是
的切线;(2)连接CD,交OE于M,
在Rt△ODE中,
∵OD=32,DE=2,
∵OE∥AB,
∴△COE∽△CAB,
∴AB=5,∵AC是直径,
∵EF∥AB,
∴S△ADF=S梯形ABEFS梯形DBEF
∴△ADF的面积为


【题型】解答题
【结束】
25【题目】【题目】已知,抛物线y=ax2+ax+b(a≠0)与直线y=2x+m有一个公共点M(1,0),且a<b.
(1)求b与a的关系式和抛物线的顶点D坐标(用a的代数式表示);
(2)直线与抛物线的另外一个交点记为N,求△DMN的面积与a的关系式;
(3)a=﹣1时,直线y=﹣2x与抛物线在第二象限交于点G,点G、H关于原点对称,现将线段GH沿y轴向上平移t个单位(t>0),若线段GH与抛物线有两个不同的公共点,试求t的取值范围.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,直线l经过⊙O的圆心O,且与⊙O交于A、B两点,点C在⊙O上,且∠AOC=30°,点P是直线l上的一个动点(与圆心O不重合),直线CP与⊙O相交于另一点Q,如果QP=QO,则∠OCP= .

相关试题