【题目】如图,在平面直角坐标系中,抛物线y=ax2+bx+5与x轴交于A(1,0)、B(5,0)两点,点D是抛物线上横坐标为6的点.点P在这条抛物线上,且不与A、D两点重合,过点P作y轴的平行线与射线AD交于点Q,过点Q作QF垂直于y轴,点F在点Q的右侧,且QF=2,以QF、QP为邻边作矩形QPEF.设矩形QPEF的周长为d,点P的横坐标为m.![]()
(1)求这条抛物线所对应的函数表达式.
(2)求这条抛物线的对称轴将矩形QPEF的面积分为1:2两部分时m的值.
(3)求d与m之间的函数关系式及d随m的增大而减小时d的取值范围.
(4)当矩形QPEF的对角线互相垂直时,直接写出其对称中心的横坐标.
参考答案:
【答案】
(1)
解:把A(1,0)、B(5,0)代入y=ax2+bx+5,
,
解得
,
∴y=x2﹣6x+5
(2)
解:如图所示:∵抛物线y=x2﹣6x+5的对称轴为:x=﹣
=﹣
=3,
∵这条抛物线的对称轴将矩形QPEF的面积分为1:2两部分,
可得PN=3﹣m,PE=2,
∴
=
或
=
,
解得:m=
或m= ![]()
![]()
(3)
解:当x=6时,y=x2﹣6x+5=62﹣6×6+5=5,
∴点D的坐标为(6,5).
射线AD所对应的函数表达式为y=x﹣1(x>1).
∴P(m,m2﹣6m+5),Q(m,m﹣1).
当1<m<6时,d=2(﹣m2+7m﹣6+2)=﹣2m2+14m﹣8,
当m>6时,d=2(m2﹣7m+6+2)=2m2﹣14m+16,
又d=﹣2m2+14m﹣8=﹣2(m﹣
)2+
,
∴d随m的增大而减小时d的取值范围是4<d≤ ![]()
(4)
解:当矩形QPEF的对角线互相垂直时,则矩形QPEF是正方形,边长为2,
当1<m<6时,m﹣1﹣(m2﹣6m+5)=2,
整理得:m2﹣7m+8=0,
解得:m1=
,m2=
,
当m>6时,m2﹣6m+5﹣(m﹣1)=2,
整理得:m2﹣7m+4=0,
解得:m3=
,m4=
(舍去),
故其对称中心的横坐标为:
+1=
,
+1=
,
+1= ![]()
【解析】(1)直接利用待定系数法求出二次函数解析式即可;(2)首先求出函数对称轴进而得出m的值;(3)分别利用当1<m<6时,d=2(﹣m2+7m﹣6+2),当m>6时,d=2(m2﹣7m+6+2)求出d的取值范围即可;(4)当矩形QPEF的对角线互相垂直时,则矩形QPEF是正方形,边长为2,进而得出m的值求出答案.
【考点精析】掌握二次函数的性质是解答本题的根本,需要知道增减性:当a>0时,对称轴左边,y随x增大而减小;对称轴右边,y随x增大而增大;当a<0时,对称轴左边,y随x增大而增大;对称轴右边,y随x增大而减小.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知四边形ABCD是平行四边形,下列结论中不正确的是( )

A. 当AB=BC时,它是菱形 B. 当AC⊥BD时,它是菱形
C. 当∠ABC=90°时,它是矩形 D. 当AC=BD时,它是正方形
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系中,正方形ABCD的顶点A(1,1),B(1,﹣1),C(﹣1,﹣1),D(﹣1,1),y轴上有一点P(0,2),作点P关于点A的对称点P1,作点P1关于点B的对称点P2,作点P2关于点C的对称点P3,作点P3关于点D的对称点P4,作点P4关于点A的对称点P5,作点P5关于点B的对称点P6,…,按此规律操作下去,则点P2017的坐标为( )

A. (2,0) B. (0,2) C. (0,﹣2) D. (﹣2,0)
-
科目: 来源: 题型:
查看答案和解析>>【题目】为了解全市九年级学生某次数学模拟考试情况,现从全市30000名九年级考生中随机抽取部分学生的数学成绩进行调查,并将调查结果绘制成如下图表:
分数段
频数
频率
x<60
20
0.10
60≤x<70
28
0.14
70≤x<80
54
0.27
80≤x<90
a
0.20
90≤x<100
24
0.12
100≤x<110
18
b
110≤x<120
16
0.08
请根据以上图表提供的信息,解答下列问题:
(1)表格中的a= ,b= ;
(2)请补全频数分布直方图;
(3)如果把成绩在90分以上(含90分)定为优秀,那么该市30000名九年级学生中本次数学模拟考试成绩为优秀的学生约有多少名?

-
科目: 来源: 题型:
查看答案和解析>>【题目】为庆祝“六一”儿童节,某市中小学统一组织文艺汇演,甲、乙两所学校共92人(其中甲校的人数多于乙校的人数,且甲校的人数不足90人)准备统一购买服装参加演出;下面是某服装厂给出的演出服装的价格表
购买服装的套数
1套至45套
46套至90套
91套以上
每套服装的价格
60元
50元
40元
(1)如果两所学校分别单独购买服装一共应付5000元,甲、乙两所学校各有多少学生准备参加演出?
(2)如果甲校有10名同学抽调去参加书法绘画比赛不能参加演出,请你为两所学校设计一种最省钱的购买服装方案.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在菱形ABCD中,对角线AC、BD相交于点O,DE∥AC,AE∥BD.
(1)求证:四边形AODE是矩形;
(2)若AB=2
,AC=2,求四边形AODE的周长.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系中,四边形OABC为矩形,点A(0,8),C(6,0).动点P从点B出发,以每秒1个单位长的速度沿射线BC方向匀速运动,设运动时间为t秒.
(1)当t= s时,以OB、OP为邻边的平行四边形是菱形;
(2)当点P在OB的垂直平分线上时,求t的值;
(3)将△OBP沿直线OP翻折,使点B的对应点D恰好落在x轴上,求t的值.

相关试题