【题目】如图,在一次夏令营活动中,小玲从营地A出发,沿北偏东60°方向走了
m到达B点,然后再沿北偏西30°方向走了500m到达目的地C点.(1)求A,C两点之间的距离.(2)确定目的地C在营地A什么方向.
![]()
参考答案:
【答案】北偏东30°的方向
【解析】
试题分析:(1)根据直角三角形的勾股定理性质可求解;
(2)根据30°角的直角三角形的性质可求解.
试题解析:(1)如图,
![]()
∴∠DAB=∠ABE=60°.
∵30°+∠CBA+∠ABE=180°,∴∠CBA=90°.
在Rt△ABC中,∵BC=500m,AB=
m,
由勾股定理可得:AC2=BC2+AB2,
所以AC=1000(m);
(2)在Rt△ABC中,∵BC=500m,AC=1000m,
∴∠CAB=30°,
∵∠DAB=60°,
∴∠DAC=30°.
即点C在点A的北偏东30°的方向
-
科目: 来源: 题型:
查看答案和解析>>【题目】2015年我市有1.6万名初中毕业生参加升学考试,为了了解这1.6万名考生的数学成绩,从中抽取2000名考生的数学成绩进行统计,在这个问题中样本是( )
A.1.6万名考生 B.2000名考生
C.1.6万名考生的数学成绩 D.2000名考生的数学成绩
-
科目: 来源: 题型:
查看答案和解析>>【题目】为执行“均衡教育”政策,我县2015年投入教育经费2500万元,预计2017年投入3600万元,若每年投入教育经费的年平均增长百分率为x,则可列方程为 .
-
科目: 来源: 题型:
查看答案和解析>>【题目】通过类比联想、引申拓展研究典型题目,可达到解一题知一类的目的.下面是一个案例,请补充完整.
原题:如图1,点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,
连接EF,则EF=BE+DF,试说明理由.

(1)思路梳理
∵AB=AD
∴把△ABE绕点A逆时针旋转90°至△ADG,可使AB与AD重合
∵∠ADC=∠B=90°
∴∠FDG=180°
∴点F、D、G共线
根据 ,易证△AFG≌ ,进而得EF=BE+DF.
(2)联想拓展
如图2,在△ABC中,∠BAC=90°,AB=AC,点D、E均在边BC上,且∠DAE=45°.猜想BD、DE、EC应满足的数量关系,并写出推理过程.
-
科目: 来源: 题型:
查看答案和解析>>【题目】下列命题中,真命题是( )
A. 两条对角线相等的四边形是矩形
B. 两条对角线互相垂直的四边形是菱形
C. 两条对角线互相垂直且相等的四边形是矩形
D. 两条对角线互相平分的四边形是平行四边形
-
科目: 来源: 题型:
查看答案和解析>>【题目】下列运算正确的是( )
A.a4a2=a8
B.a5+a5=a10
C.(﹣3a3)2=6a6
D.(a3)2a=a7 -
科目: 来源: 题型:
查看答案和解析>>【题目】在一次数学测试中,某班50名学生的成绩分为六组,第一组到第四组的频数分别为6,8,9,12,第五组的频数是0.2,则第六组的频数是 .
相关试题