【题目】如图,已知二次函数y=
x2﹣
x﹣3的图象与x轴交于A,B两点(点A在点B的左侧),与y轴的负半轴交于点C,顶点为D,作直线CD,点P是抛物线对称轴上的一点,若以P为圆心的圆经过A,B两点,并且和直线CD相切,则点P的坐标为![]()
参考答案:
【答案】(4,0)或(4,
)
【解析】解:当y=0时,
x2﹣
x﹣3=0,解得x1=﹣1,x2=9,则A(﹣1,0),B(9,0),
当x=0时,y=
x2﹣
x﹣3=﹣3,则C(0,﹣3),
∵y=
x2﹣
x﹣3=
(x﹣4)2﹣
,
∴抛物线的对称轴为直线x=4,D点坐标为(4,﹣
),
设直线CD的解析式为y=kx+b,
把C(0,﹣3),D(4,﹣
)代入得
,解得
,
∴直线CD的解析式为y=﹣
x﹣3,
过P点作PH⊥直线CD于H,连结PB,CD交x轴于E点,抛物线的对称轴交x轴于F点,如图,则F(4,0),E(﹣
,0),
∴EF=4﹣(﹣
)=
,FB=
,
∴DE=
=
,
设P(4,t),则PD=t+
,PB=
=
,
∵以P为圆心的圆经过A,B两点,并且和直线CD相切,
∴PH=PB=
,
∵∠PDH=∠EDF,
∴Rt△DPH∽Rt△DEF,
∴
=
,即
=
,
整理得8t2﹣75t=0,解得t1=0,t2=
,
∴P点坐标为(4,0)或(4,
).
所以答案是(4,0)或(4,
).![]()
【考点精析】掌握二次函数的性质和切线的性质定理是解答本题的根本,需要知道增减性:当a>0时,对称轴左边,y随x增大而减小;对称轴右边,y随x增大而增大;当a<0时,对称轴左边,y随x增大而增大;对称轴右边,y随x增大而减小;切线的性质:1、经过切点垂直于这条半径的直线是圆的切线2、经过切点垂直于切线的直线必经过圆心3、圆的切线垂直于经过切点的半径.
-
科目: 来源: 题型:
查看答案和解析>>【题目】学校书法兴趣小组准备到文具店购买A,B两种类型的毛笔,文具店的销售方法是:一次性购买A型毛笔不超过20支时,按零售价销售;超过20支时,超过部分每支比零售价低0.4元,其余部分仍按零售价销售.一次性购买B型毛笔不超过15支时,按零售价销售;超过15支时,超过部分每支比零售价低0.6元,其余部分仍按零售价销售.如果全组共有20名同学,若每人各买1支A型毛笔和2支B型毛笔,共支付145元;若每人各买2支A型毛笔和1支B型毛笔,共支付129元.这家文具店的A,B两种类型毛笔的零售价各是多少?
-
科目: 来源: 题型:
查看答案和解析>>【题目】某地生产一种绿色蔬菜,若在市场上直接销售,每吨利润为1 000元;经粗加工后销售,每吨利润可达4 500元;经精加工后销售,每吨利润涨至7 500元.
当地一家蔬菜公司收获这种蔬菜140吨,该公司加工厂的生产能力是:如果对蔬菜进行粗加工,每天可加工16吨;如果进行精加工,每天可加工6吨,但两种加工方式不能同时进行,受季节等条件限制,公司必须在15天内将这批蔬菜全部销售或加工完毕,为此公司制订了三种方案:
方案一:将蔬菜全部进行粗加工;
方案二:尽可能多的对蔬菜进行精加工,没有来得及进行加工的蔬菜,在市场上直接销售;
方案三:将部分蔬菜进行精加工,其余蔬菜进行粗加工,并恰好15天完成.
你认为选择哪种方案获利最多?为什么?
-
科目: 来源: 题型:
查看答案和解析>>【题目】某县为了落实中央的“强基惠民工程”,计划将某村的居民自来水管道进行改造.该工程若由甲队单独施工恰好在规定时间内完成;若乙队单独施工,则完成工程所需天数是规定天数的1.5倍.如果由甲、乙队先合做15天,那么余下的工程由甲队单独完成还需5天.
(1)这项工程的规定时间是多少天?
(2)已知甲队每天的施工费用为6500元,乙队每天的施工费用为3500元.为了缩短工期以减少对居民用水的影响,工程指挥部最终决定该工程由甲、乙队合做来完成.则该工程施工费用是多少?
-
科目: 来源: 题型:
查看答案和解析>>【题目】情景观察:如图1,△ABC中,AB=AC,∠BAC=45°,CD⊥AB,AE⊥BC,垂足分别为D、E,CD与AE交于点F.
①写出图1中所有的全等三角形 ;
②线段AF与线段CE的数量关系是 ,并写出证明过程.
问题探究:
如图2,△ABC中,∠BAC=45°,AB=BC,AD平分∠BAC,AD⊥CD,垂足为D,AD与BC交于点E.
求证:AE=2CD.

-
科目: 来源: 题型:
查看答案和解析>>【题目】在一个不透明的盒子中,共有“一红二白”三个球,它们除颜色外其余都相同.
(1)从盒子中摸出1个球,是白球的概率是多少?
(2)从盒子中摸出1个球,不放回再摸出1个球,请用画树状图或列表的方式表示出所有可能的结果,并求出摸出的恰好是“一红一白”的概率. -
科目: 来源: 题型:
查看答案和解析>>【题目】为发展校园足球运动,某县城区四校决定联合购买一批足球运动装备,市场调查发现:甲、乙两商场以同样的价格出售同种品牌的足球队服和足球,已知每套队服比每个足球多50元,两套队服与三个足球的费用相等,经洽谈,甲商场优惠方案是:每购买十套队服,送一个足球;乙商场优惠方案是:若购买队服超过80套,则购买足球打八折.
(1)求每套队服和每个足球的价格是多少?
(2)若城区四校联合购买100套队服和a个足球,请用含a的式子分别表示出到甲商场和乙商场购买装备所花的费用;
(3)假如你是本次购买任务的负责人,你认为到哪家商场购买比较合算?
相关试题