【题目】已知:如图,AB是⊙O的直径,AB=6,延长AB到点C,使BC=AB,D是⊙O上一点,DC=
.求证: ![]()
(1)△CDB∽△CAD;
(2)CD是⊙O的切线.
参考答案:
【答案】
(1)证明:∵AB=6,BC=AB,DC=
,
∴AC=12,BC=6.
∴
.
∵∠C=∠C,
∴△CDB∽△CAD
(2)证明:(证法一):连接OD,则有OD=3,
∵OC=9,DC=
,
∵DC2+OD2=(6
)2+32=81=92
∴DC2+OD2=OC2
∴∠ODC=90°,
∴CD⊥OD.
又∵OD是半径,
∴CD是⊙O的切线.
(证法二):连接OD,则有OD=OA,
∴∠A=∠ADO.
∵△CDB∽△CAD,
∴∠CDB=∠A.
∴∠CDB=∠ADO.
∵AB是⊙O的直径,
∴∠ADB=90°.
即∠ADO+∠ODB=90°.
∴∠CDB+∠ODB=90°.
即∠ODC=90°.
∴CD⊥OD.
∵OD是半径,
∴CD是⊙O的切线.
![]()
【解析】(1)根据已知及相似三角形的判定方法进行分析即可;(2)连接OD,求出OD2+CD2=OC2 , 根据勾股定理的逆定理得出∠ODC=90°,得出结论.
【考点精析】本题主要考查了切线的判定定理和相似三角形的判定的相关知识点,需要掌握切线的判定方法:经过半径外端并且垂直于这条半径的直线是圆的切线;相似三角形的判定方法:两角对应相等,两三角形相似(ASA);直角三角形被斜边上的高分成的两个直角三角形和原三角形相似; 两边对应成比例且夹角相等,两三角形相似(SAS);三边对应成比例,两三角形相似(SSS)才能正确解答此题.
-
科目: 来源: 题型:
查看答案和解析>>【题目】计算题:
(1)(-20)-(+3)-(-5) (2)

(3) |-3|×(-5)÷(-
) (4)
(5)
(6)(
)×4(7)
(8) 
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图把长方形沿对角线折叠,重合部分为△EBD。
(1) △EBD是等腰三角形吗?为什么?
(2) 若AB=12cm,BC=18cm,求AE的长。

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,分别以Rt△ABC的直角边AC及斜边AB向外作等边△ACD及等边△ABE.已知∠BAC=30°,EF⊥AB,垂足为F,连接DF.

(1)试说明AC=EF;
(2)求证:四边形ADFE是平行四边形.
-
科目: 来源: 题型:
查看答案和解析>>【题目】今年8月,我国空军八一飞行表演队赴俄罗斯国际军事技术论坛上进行飞行表演,其中一架飞机起飞后的高度变化如下表:

(1) 如果飞机每上升或下降1千米需消耗2升燃油,那么这架飞机在这4个动作表演过程中,一共消耗了多少升燃油?
(2) 如果飞机做特技表演时,有4个规定动作,起飞后高度变化如下:上升3.8千米,下降2.9千米,再上升1.6千米.若要使飞机最终比起飞点高出1千米,问第4个动作是上升还是下降,上升或下降多少千米?
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,∠ACB=90°,BC的垂直平分线DE交BC于D,交AB于E,F在DE上,并且AF=CE.

(1)求证:四边形ACEF是平行四边形;
(2)当∠B的大小满足什么条件时,四边形ACEF是菱形?请回答并证明你的结论;
(3)四边形ACEF有可能是正方形吗?为什么?
-
科目: 来源: 题型:
查看答案和解析>>【题目】有三张正面分别标有数字:﹣1,1,2的卡片,它们除数字不同外其余全部相同,现将它们背面朝上,洗匀后从中抽出一张记下数字,放回洗匀后再从中随机抽出一张记下数字.
(1)请用列表或画树形图的方法(只选其中一种),表示两次抽出卡片上的数字的所有结果;
(2)将第一次抽出的数字作为点的横坐标x,第二次抽出的数字作为点的纵坐标y,求点(x,y)落在双曲线y=
上的概率.
相关试题