【题目】已知关于x的一元二次方程(k﹣2)2x2+(2k+1)x+1=0有两个不相等的实数根,则k的取值范围是( )
A.k>
且k≠2
B.k≥
且k≠2
C.k>
且k≠2
D.k≥
且k≠2
参考答案:
【答案】C
【解析】解:根据题意得k﹣2≠0且△=(2k+1)2﹣4(k﹣2)2>0, 解得:k>
且k≠2.
故选C.
【考点精析】本题主要考查了一元二次方程的定义和求根公式的相关知识点,需要掌握只有一个未知数,并且未知数的项的最高系数为2的方程为一元二次方程;根的判别式△=b2-4ac,这里可以分为3种情况:1、当△>0时,一元二次方程有2个不相等的实数根2、当△=0时,一元二次方程有2个相同的实数根3、当△<0时,一元二次方程没有实数根才能正确解答此题.
-
科目: 来源: 题型:
查看答案和解析>>【题目】课堂上学习了勾股定理后,知道“勾三、股四、弦五”.王老师给出一组数让学生观察:3、4、5;5、12、13;7、24、25;9、40、41;…,学生发现这些勾股 数的勾都是奇数,且从 3 起就没有间断过,于是王老师提出以下问题让学生解决.
(1)请你根据上述的规律写出下一组勾股数:11、________、________;
(2)若第一个数用字母a(a为奇数,且a≥3)表示,那么后两个数用含a的代数式分别怎么表示?小明发现每组第二个数有这样的规律4=
,12=
,24=
……,于是他很快表示了第二数为
,则用含a的代数式表示第三个数为________;(3)用所学知识证明你的结论.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在菱形ABCD中,∠BAD=80°,AB的垂直平分线交对角线AC于点F,点E为垂足,连接DF,则∠CDF为( )

A.80°
B.70°
C.65°
D.60° -
科目: 来源: 题型:
查看答案和解析>>【题目】“低碳环保,绿色出行”的概念得到广大群众的接受,越来越多的人喜欢选择骑自行车作为出行工具.小军和爸爸同时骑车去图书馆,爸爸先以150米/分的速度骑行一段时间,休息了5分钟,再以m米/分的速度到达图书馆.小军始终以同一速度骑行,两人骑行的路程为y(米)与时间x(分钟)的关系如图.请结合图象,解答下列问题:
(1)填空:a=________;b=________;m=________.
(2)若小军的速度是 120 米/分,求小军第二次与爸爸相遇时距图书馆的距离.
(3)在(2)的条件下,爸爸自第二次出发后,骑行一段时间后与小军相距100 米,此时 小军骑行的时间为________分钟.

-
科目: 来源: 题型:
查看答案和解析>>【题目】已知四边形ABCD是菱形,△AEF是正三角形,E、F分别在BC、CD上,且EF=CD,则∠BAD= .
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,在平面直角坐标系中,O是坐标原点,长方形OACB的顶点A、B分别在x轴与y轴上,已知OA=6,OB=10.点D为y轴上一点,其坐标为(0,2),点P从点A出发以每秒2个单位的速度沿线段AC﹣CB的方向运动,当点P与点B重合时停止运动,运动时间为t秒.
(1)当点P经过点C时,求直线DP的函数解析式;
(2)如图②,把长方形沿着OP折叠,点B的对应点B′恰好落在AC边上,求点P的坐标.
(3)点P在运动过程中是否存在使△BDP为等腰三角形?若存在,请求出点P的坐标;若不存在,请说明理由.

-
科目: 来源: 题型:
查看答案和解析>>【题目】解方程:
(1)x2+2x﹣2=0
(2)3x2+4x﹣7=0
(3)(x+3)(x﹣1)=5
(4)(3﹣x)2+x2=9.
相关试题