【题目】如图,有一块边长为6cm的正三角形纸板,在它的三个角处分别截去一个彼此全等的筝形,再沿图中的虚线折起,做成一个无盖的直三棱柱纸盒,则该纸盒侧面积的最大值是( )
![]()
A.
cm2 B.![]()
cm2 C.![]()
cm2 D.![]()
cm2
参考答案:
【答案】C
【解析】
试题分析:如图,由等边三角形的性质可以得出∠A=∠B=∠C=60°,由三个筝形全等就可以得出AD=BE=BF=CG=CH=AK,根据折叠后是一个三棱柱就可以得出DO=PE=PF=QG=QH=OK,四边形ODEP、四边形PFGQ、四边形QHKO为矩形,且全等.连结AO证明△AOD≌△AOK就可以得出∠OAD=∠OAK=30°,设OD=x,则AO=2x,由勾股定理就可以求出AD=
x,由矩形的面积公式就可以表示纸盒的侧面积,由二次函数的性质就可以求出结论.
解:∵△ABC为等边三角形,
∴∠A=∠B=∠C=60°,AB=BC=AC.
∵筝形ADOK≌筝形BEPF≌筝形AGQH,
∴AD=BE=BF=CG=CH=AK.
∵折叠后是一个三棱柱,
∴DO=PE=PF=QG=QH=OK,四边形ODEP、四边形PFGQ、四边形QHKO都为矩形.
∴∠ADO=∠AKO=90°.
连结AO,
在Rt△AOD和Rt△AOK中,
,
∴Rt△AOD≌Rt△AOK(HL).
∴∠OAD=∠OAK=30°.
设OD=x,则AO=2x,由勾股定理就可以求出AD=
x,
∴DE=6﹣2
x,
∴纸盒侧面积=3x(6﹣2
x)=﹣6
x2+18x,
=﹣6
(x﹣
)2+
,
∴当x=
时,纸盒侧面积最大为
.
故选C.
![]()
-
科目: 来源: 题型:
查看答案和解析>>【题目】若∠α与∠β的两边分别平行,且∠α=(2x+10)°,∠β=(3x﹣20)°,则∠α的度数为( )
A. 70° B. 86° C. 70°或86° D. 30°或38°
-
科目: 来源: 题型:
查看答案和解析>>【题目】分解因式:2x3﹣8xy2= .
-
科目: 来源: 题型:
查看答案和解析>>【题目】四个数﹣3.14,0,1,2中为负数的是( ).
A.﹣3.14 B.0 C.1 D.2
-
科目: 来源: 题型:
查看答案和解析>>【题目】如(x+m)与(x+3)的乘积中不含x的一次项,则m的值为( ).
A. -3 B. 3 C. 0 D. 1
-
科目: 来源: 题型:
查看答案和解析>>【题目】为了参加中考体育测试,甲、乙、丙三位同学进行足球传球训练,球从一个人脚下随机传到另一个人脚下,且每位传球人传给其余两人的机会是均等的,由甲开始传球,共传球三次.
(1)请利用树状图列举出三次传球的所有可能情况;
(2)求三次传球后,球回到甲脚下的概率;
(3)三次传球后,球回到甲脚下的概率大还是传到乙脚下的概率大?
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,抛物线y=﹣
x2+bx+c交x轴于点A,B,交y轴于点C,点A的坐标是(﹣1,0),点C的坐标是(0,2).
(1)求该抛物线的解析式;
(2)已知点P是抛物线的上的一个动点,点N在x轴上.
①若点P在x轴上方,且△APN是等腰直角三角形,求点N的坐标;
②若点P在x轴下方,且△ANP与△BOC相似,请直接写出点N的坐标.
相关试题