【题目】如图,在△ABC中,AB=AC,AD是角平分线,BE平分∠ABC交AD于点E,点O在AB上,以OB为半径的⊙O经过点E,交AB于点F ![]()
(1)求证:AD是⊙O的切线;
(2)若AC=4,∠C=30°,求
的长.
参考答案:
【答案】
(1)证明:
如图,连接OE,
![]()
∵OB=OE,
∴∠OBE=∠OEB,
∵BE平分∠ABC,
∴∠OBE=∠EBD,
∴∠OEB=∠EBD,
∴OE∥BD,
∵AB=AC,AD平分∠BAC,
∴AD⊥BC,
∴∠OEA=∠BDA=90°,
∴AD是⊙O的切线
(2)解:∵AB=AC=4,∠C=∠B=30°,
∴BD=2
,
设圆的半径为r,则BO=OE=r,AO=AC﹣OB=4﹣r,
∵OE∥BD,
∴
=
,即
=
,解得r=8
﹣12,
∴
=
= ![]()
【解析】(1)连接OE,利用角平分线的定义和圆的性质可得∠OBE=∠OEB=∠EBD,可证明OE∥BD,结合等腰三角形的性质可得AD⊥BD,可证得OE⊥AD,可证得AD为切线;(2)利用(1)的结论,结合条件可求得∠AOE=30°,由(1)可知OE∥BD,设半径为r,则OB=OE=r,AO=4﹣r,在Rt△ABD中,由勾股定理可求得BD,由平行线分线段成比例可得到关于r的方程,可求得圆的半径,利用弧长公式可求得
.
【考点精析】认真审题,首先需要了解等腰三角形的性质(等腰三角形的两个底角相等(简称:等边对等角)),还要掌握含30度角的直角三角形(在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半)的相关知识才是答题的关键.
-
科目: 来源: 题型:
查看答案和解析>>【题目】甲骑自行车、乙骑摩托车沿相同路线由A地到B地,行驶过程中路程与时间关系的图像如图所示.根据图像解答下列问题:
(1)谁先出发?先出发多少时间?谁先到达终点?先到多少时间?
(2)分别求出甲、乙两人的行驶速度;
(3)在什么时间段内,两人均行驶在途中?(不包括起点和终点)

-
科目: 来源: 题型:
查看答案和解析>>【题目】在△ABC中,AB=AC,点D是直线BC上一点(不与B、C重合),以AD为一边在AD的右侧作△ADE,使AD=AE,∠DAE=∠BAC,连接CE.
(1)如图1,当点D在线段BC上,如果∠BAC=90°,则∠BCE= 度;
(2)设∠BAC=α,∠BCE=β.
①如图2,当点D在线段BC上移动,则α,β之间有怎样的数量关系?请说明理由;
②当点D在直线BC上移动,则α,β之间有怎样的数量关系?请直接写出你的结论.

-
科目: 来源: 题型:
查看答案和解析>>【题目】在生物课上,老师告诉同学们:“微生物很小,枝原体直径只有0.1微米”,这相当于________________米(1米=106微米,请用科学记数法表示).
-
科目: 来源: 题型:
查看答案和解析>>【题目】下列语句中不正确的是( )
A.同一平面内,不相交的两条直线叫做平行线
B.在同一平面内,过一点有且只有一条直线与己知直线垂直
C.如果两个三角形,两条对应边及其夹角相等,那么这两个三角形全等
D.角是轴对称图形,它的角平分线是对称轴
-
科目: 来源: 题型:
查看答案和解析>>【题目】计算(a2)3,正确结果是( )
A.a5B.a6
C.a8D.a9
-
科目: 来源: 题型:
查看答案和解析>>【题目】在算式x·x5,x7y÷xy,(x2y3)÷y3和xn+6÷xn中,结果为x6的算式个数是( )
A.1B.2
C.3D.4
相关试题