【题目】如下图1,在四边形ABCD中,点E、F分别是AB、CD的中点.过点E作AB的垂线,过点F作CD的垂线,两垂线交于点G,连结GA、GB、GC、GD、EF,若∠AGD=∠BGC.
![]()
(1)求证:AD=BC;
(2)求证:△AGD∽△EGF;
(3)如图2,若AD、BC所在直线互相垂直,求
的值.
参考答案:
【答案】(1)证明见解析;(2)证明见解析;(3)
.
【解析】
试题分析:本题是相似形综合题目,考查了线段垂直平分线的性质、全等三角形的判定与性质、相似三角形的判定与性质、三角函数等知识;本题难度较大,综合性强,特别是(3)中,需要通过作辅助线综合运用(1)(2)的结论和三角函数才能得出结果.
(2)先证出∠AGB=∠DGC,由
=
,证出△AGB∽△DGC,得出比例式
=
,再证出∠AGD=∠EGF,即可得出△AGD∽△EGF;
(3)延长AD交GB于点M,交BC的延长线于点H,则AH⊥BH,由△AGD≌△BGC,得出∠GAD=∠GBC,再求出∠AGE=∠AHB=90°,得出∠AGE=
∠AGB=45°,求出
=
,由△AGD∽△EGF,即可得出
的值即可.
试题解析:(1)∵GE是AB的垂直平分线,
∴GA=GB,
同理:GD=GC,
在△AGD和△BGC中,
,
∴△AGD≌△BGC(SAS),
∴AD=BC;
(2)∵∠AGD=∠BGC,
∴∠AGB=∠DGC,
在△AGB和△DGC中,
=
,
∴△AGB∽△DGC,
∴
=
,
又∵∠AGE=∠DGF,
∴∠AGD=∠EGF,
∴△AGD∽△EGF;
(3)延长AD交GB于点M,交BC的延长线于点H,如图所示,则AH⊥BH,
∵△AGD≌△BGC,
∴∠GAD=∠GBC,
在△GAM和△HBM中,∠GAD=∠GBC,∠GMA=∠HMB,
∴∠AGB=∠AHB=90°,
∴∠AGE=
∠AGB=45°,
∴
=
,
又∵△AGD∽△EGF,
∴
=
=
.
![]()
-
科目: 来源: 题型:
查看答案和解析>>【题目】小明和小颖用一副扑克牌做摸牌游戏(去掉大小王):小明从中任意抽取一张牌(不放回),小颖从剩余的牌中任意抽取一张,谁摸到的牌面大谁就获胜(规定牌面从小到大的顺序为:2,3,4,5,6,7,8,9,10,J,Q,K,A,且牌面的大小与花色无关).然后两人把摸到的牌都放回,重新开始游戏.
(1)现小明已经摸到的牌面为4,然后小颖摸牌,那么小明获胜的概率是多少?小颖获胜的概率又是多少?
(2)若小明已经摸到的牌面为2,情况又如何?如果若小明已经摸到的牌面为A呢?
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图表示的是汽车在行驶的过程中,速度随时间变化而变化的情况.
(1)汽车从出发到最后停止共经过了多少时间?它的最高时速是多少?
(2)汽车在那些时间段保持匀速行驶?时速分别是多少?
(3)出发后8分到10分之间可能发生了什么情况?
(4)用自己的语言大致描述这辆汽车的行驶情况.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图在平面直角坐标系xOy中,直线l经过点A(-1,0),点A1,A2,A3,A4,A5,……按所示的规律排列在直线l上.若直线 l上任意相邻两个点的横坐标都相差1、纵坐标也都相差1,若点An(n为正整数)的横坐标为2015,则n= .

-
科目: 来源: 题型:
查看答案和解析>>【题目】某校为了了解学生在校午餐所需的时间,抽查了 20 名同学在校午餐所需的时间,获得如 下数据(单位:分):10,12,15,10,16,18,19,18,20,34,22,25,20,18,18,20,15,16,21,16.若将这些数据分为 5组,则组距是( )
A.4 分B.5 分C.6 分D.7 分
-
科目: 来源: 题型:
查看答案和解析>>【题目】若(x-1)0=1成立,则z的取值范围是( )
A. x= -1 B. x=1 C. x≠0 D. x≠1
-
科目: 来源: 题型:
查看答案和解析>>【题目】计算:20042﹣2003×2005= .
相关试题