【题目】如图,一次函数y=kx+b(k<0)与反比例函数
的图象相交于A、B两点,一次函数的图象与y轴相交于点C,已知点A(4,1)
(1)求反比例函数的解析式;
(2)连接OB(O是坐标原点),若△BOC的面积为3,求该一次函数的解析式.
![]()
参考答案:
【答案】(1)
;(2)
.
【解析】
试题分析:(1)由点A的坐标结合反比例函数系数k的几何意义,即可求出m的值;
(2)设点B的坐标为(n,
),将一次函数解析式代入反比例函数解析式中,利用根与系数的关系可找出n、k的关系,由三角形的面积公式可表示出来b、n的关系,再由点A在一次函数图象上,可找出k、b的关系,联立3个等式为方程组,解方程组即可得出结论.
试题解析:(1)∵点A(4,1)在反比例函数
的图象上,∴m=4×1=4,∴反比例函数的解析式为
.
(2)∵点B在反比例函数
的图象上,∴设点B的坐标为(n,
).
将y=kx+b代入
中,得:
kx+b=
,整理得:
,∴4n=
,即nk=﹣1①.
令y=kx+b中x=0,则y=b,即点C的坐标为(0,b),∴S△BOC=
bn=3,∴bn=6②.
∵点A(4,1)在一次函数y=kx+b的图象上,∴1=4k+b③.
联立①②③成方程组,即
,解得:
,∴该一次函数的解析式为
.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平行四边形ABCD中,点A、B、C的坐标分别是(1,0)、(3,1)、(3,3),双曲线
(k≠0,x>0)过点D.(1)求双曲线的解析式;
(2)作直线AC交y轴于点E,连结DE,求△CDE的面积.

-
科目: 来源: 题型:
查看答案和解析>>【题目】问题情境:如图①,在直角三角形ABC中,∠BAC=90°,AD⊥BC于点D,可知:∠BAD=∠C(不需要证明);
特例探究:如图②,∠MAN=90°,射线AE在这个角的内部,点B、C在∠MAN的边AM、AN上,且AB=AC, CF⊥AE于点F,BD⊥AE于点D.证明:△ABD≌△CAF;
归纳证明:如图③,点BC在∠MAN的边AM、AN上,点EF在∠MAN内部的射线AD上,∠1、∠2分别是△ABE、△CAF的外角.已知AB=AC, ∠1=∠2=∠BAC.求证:△ABE≌△CAF;
拓展应用:如图④,在△ABC中,AB=AC,AB>BC.点D在边BC上,CD=2BD,点E、F在线段AD上,∠1=∠2=∠BAC.若△ABC的面积为15,则△ACF与△BDE的面积之和为 .(12分)




-
科目: 来源: 题型:
查看答案和解析>>【题目】化简求值:2(3x2﹣2x+1)﹣(5﹣2x2﹣7x),其中x=﹣1.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知点(﹣2,y1),(﹣1,y2),(1,y3)都在直线y=﹣x上,则y1,y2,y3的大小关系是( )
A.y1>y2>y3B.y1<y2<y3C.y3>y1>y2D.y3<y1<y2
-
科目: 来源: 题型:
查看答案和解析>>【题目】下列选择中,是直角三角形的三边长的是( )
A.1,2,3B.2,5,3C.3,4,5D.4,5,6
-
科目: 来源: 题型:
查看答案和解析>>【题目】如果3x﹣7=8,则下列结论正确的是( )
A. 4x+20=0 B. 2x+3x=25 C. 2x=8 D. 10x=10
相关试题