如图,将斜边长为4的直角三角板放在直角坐标系xOy中,两条直角边分别与坐标轴重合,P为斜边的中点.现将此三角板绕点O顺时针旋转120°后点P的对应点的坐标是(  )

A.(,1)     B.(1,﹣)  C.(2,﹣2)       D.(2,﹣2


B【考点】坐标与图形变化-旋转.

【专题】计算题.

【分析】根据题意画出△AOB绕着O点顺时针旋转120°得到的△COD,连接OP,OQ,过Q作QM⊥y轴,由旋转的性质得到∠POQ=120°,根据AP=BP=OP=2,得到∠AOP度数,进而求出∠MOQ度数为30°,在直角三角形OMQ中求出OM与MQ的长,即可确定出Q的坐标.

【解答】解:根据题意画出△AOB绕着O点顺时针旋转120°得到的△COD,连接OP,OQ,过Q作QM⊥y轴,

∴∠POQ=120°,

∵AP=OP,

∴∠BAO=∠POA=30°,

∴∠MOQ=30°,

在Rt△OMQ中,OQ=OP=2,

∴MQ=1,OM=

则P的对应点Q的坐标为(1,﹣),

故选B

【点评】此题考查了坐标与图形变化﹣旋转,熟练掌握旋转的性质是解本题的关键.

 


关闭