【题目】正方形ABCD中,点E、F分别是边AD、AB的中点,连接EF.
![]()
(1)如图1,若点G是边BC的中点,连接FG,则EF与FG关系为: ;
(2)如图2,若点P为BC延长线上一动点,连接FP,将线段FP以点F为旋转中心,逆时针旋转900,得到线段FQ,连接EQ,请猜想EF、EQ、BP三者之间的数量关系,并证明你的结论;
(3)若点P为CB延长线上一动点,按照(2)中的作法,在图3中补全图形,并直接写出EF、EQ、BP三者之间的数量关系: .
参考答案:
【答案】解:(1)垂直且相等。
(2)EF、EQ、BP三者之间的数量关系为:
。
证明如下:
如图,取BC的中点G,连接FG,
![]()
由(1)得EF=FG,EF⊥FG,
根据旋转的性质,FP=FQ,∠PFQ =90°。
∴∠GFP=∠GFE—∠EFP=90°—∠EFP,
∠EFQ=∠PFQ—∠EFP=90°—∠EFP。
∴∠GFP=∠EFQ。
在△FQE和△FPG中,∵EF=GF,∠EFQ=∠GFP,FQ = FP,
∴△FQE≌△FPG(SAS)。∴EQ=GP。
∴
。
(3)补图如下,F、EQ、BP三者之间的数量关系为:
。
![]()
【解析】
试题分析:(1)EF与FG关系为垂直且相等(EF=FG且EF⊥FG)。证明如下:
∵点E、F、G分别是正方形边AD、AB、BC的中点,
∴△AEF和△BGD是两个全等的等腰直角三角形。
∴EF=FG,∠AFE=∠BFG=45°。∴∠EFG=90°,即EF⊥FG。
(2)取BC的中点G,连接FG,则由SAS易证△FQE≌△FPG,从而EQ=GP,因此
。
(3)同(2)可证△FQE≌△FPG(SAS),得EQ=GP,因此,
。
-
科目: 来源: 题型:
查看答案和解析>>【题目】在△ABC中,AB=6,AC=BC=5,将△ABC绕点A按顺时针方向旋转,得到△ADE,旋转角为α(0°<α<180°),点B的对应点为点D,点C的对应点为点E,连接BD,BE.

(1)如图,当α=60°时,延长BE交AD于点F.
①求证:△ABD是等边三角形;
②求证:BF⊥AD,AF=DF;
③请直接写出BE的长;
(2)在旋转过程中,过点D作DG垂直于直线AB,垂足为点G,连接CE,当∠DAG=∠ACB,且线段DG与线段AE无公共点时,请直接写出BE+CE的值.
温馨提示:考生可以根据题意,在备用图中补充图形,以便作答. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,O是正△ABC内一点,OA=3,OB=4,OC=5,将线段BO以点B为旋转中心逆时针旋转60°得到线段BO′,下列结论:①△BO′A可以由△BOC绕点B逆时针旋转60°得到;②点O与O′的距离为4;③∠AOB=150°;④S四边形AOBO′=6+4
;⑤S△AOC+S△AOB=6+
,其中正确的结论是( )
A. ①②③⑤ B. ①②③④ C. ①②④⑤ D. ①②③④⑤
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在边长为1的小正方形组成的6
6网格中,A,B,C是格点(我们把组成网格的小正方形的顶点,称为格点),其中点C在直线AB外。
(1)过A点画AB的垂线AG;
(2)过C点画AB的平行线CH;
(3)连接BC,线段BC与线段AB的关系:______________;
(4)_____________________是点C到直线AB的距离;
(5)因为直线外一点和直线上各点连接的所有线段中,垂线段最短,所以线段AC,BC的大小关系是______________(用“<”号连接)
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系中,矩形OCDE的顶点C和E分别在y轴的正半轴和x轴的正半轴上,OC=8,OE=17,抛物线y=
x2﹣3x+m与y轴相交于点A,抛物线的对称轴与x轴相交于点B,与CD交于点K. 
(1)将矩形OCDE沿AB折叠,点O恰好落在边CD上的点F处.
①点B的坐标为(),BK的长是 , CK的长是
②求点F的坐标;
③请直接写出抛物线的函数表达式;
(2)将矩形OCDE沿着经过点E的直线折叠,点O恰好落在边CD上的点G处,连接OG,折痕与OG相交于点H,点M是线段EH上的一个动点(不与点H重合),连接MG,MO,过点G作GP⊥OM于点P,交EH于点N,连接ON,点M从点E开始沿线段EH向点H运动,至与点N重合时停止,△MOG和△NOG的面积分别表示为S1和S2 , 在点M的运动过程中,S1S2(即S1与S2的积)的值是否发生变化?若变化,请直接写出变化范围;若不变,请直接写出这个值.
温馨提示:考生可以根据题意,在备用图中补充图形,以便作答. -
科目: 来源: 题型:
查看答案和解析>>【题目】为响应“书香校响园”建设的号召,在全校形成良好的阅读氛围,随机调查了部分学生平均每天阅读时间,统计结果如图所示,则本次调查中阅读时间为的众数和中位数分别是( )

A.2和1
B.1.25和1
C.1和1
D.1和1.25 -
科目: 来源: 题型:
查看答案和解析>>【题目】菱形ABCD的对角线AC,BD相交于点O,E,F分别是AD,CD边上的中点,连接EF.若EF=
,BD=2,则菱形ABCD的面积为( ) 
A.2
B.
C.6
D.8
相关试题