【题目】把一枚六个面编号为1,2,3,4,5,6的质地均匀的正六面体骰子连续投掷2次,若两次正面朝上的编号分别为m、n,则二次函数y=x2+mx+2n的图象与x轴至少有一个交点的概率是_____.
参考答案:
【答案】![]()
【解析】
本题可先列出出现的点数的情况,因为二次图象开口向上,要使图象与x轴有至少有一个交点,则m2-8n≥0,再把m、n的值一一代入检验,看是否满足.最后把满足的个数除以掷骰子可能出现的点数的总个数即可.
掷骰子有6×6=36种情况。
根据题意有:m28n≥0,
因此满足的点有:n=1,m=3,4,5,6,
n=2,m=4,5,6,
n=3,m=5,6,
n=4,m=6,
n=5,m不存在,
n=6,m不存在,
共有10种,
故概率为:
=
.
-
科目: 来源: 题型:
查看答案和解析>>【题目】(1)已知长方体的长、宽、高分别是3x﹣4、2x和x,则它的表面积是_____;
(2)若3x3﹣x=1,则9x4+12x3﹣3x2﹣7x+2018=_____;
(3)若25x=2000,80y=2000,则
的值为_____. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,∠B=∠C=90°,E是BC的中点,DE平分∠ADC.
(1)求证:AE平分∠DAB;
(2)若AD=8,BC=6,求四边形ABCD的面积.

-
科目: 来源: 题型:
查看答案和解析>>【题目】某工厂以每千克200元的价格购进甲种原料360千克,用于生产A、B两种产品,生产1件A产品或1件B产品所需甲、乙两种原料的千克数如下表:
产品/原料
A
B
甲(千克)
9
4
乙(千克)
3
10
乙种原料的价格为每千克300元,A产品每件售价3000元,B产品每件售价4200元,现将甲种原料全部用完,设生产A产品x件,B产品m件,公司获得的总利润为y元.
(1)写出m与x的关系式;
(2)求y与x的关系式;
(3)若使用乙种原料不超过510千克,生产A种产品多少件时,公司获利最大?最大利润为多少?
-
科目: 来源: 题型:
查看答案和解析>>【题目】今年某市为创评“全国文明城市”称号,周末团市委组织志愿者进行宣传活动.班主任梁老师决定从4名女班干部(小悦、小惠、小艳和小倩)中通过抽签方式确定2名女生去参加.抽签规则:将4名女班干部姓名分别写在4张完全相同的卡片正面,把四张卡片背面朝上,洗匀后放在桌面上,梁老师先从中随机抽取一张卡片,记下姓名,再从剩余的3张卡片中随机抽取第二张,记下姓名.
(1)该班男生“小刚被抽中”是 事件,“小悦被抽中”是 事件(填“不可能”或“必然”或“随机”);第一次抽取卡片“小悦被抽中”的概率为 ;
(2)试用画树状图或列表的方法表示这次抽签所有可能的结果,并求出“小惠被抽中”的概率.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△ABD和△ACE中,AB=AD,AC=AE,∠DAB=∠CAE=α,连接DC、BE.
(1)如图1,求证:DC=BE;
(2)如图2,DC,BE交于点F,用含α的式子表示∠AFE;
(3)如图3,过A作AG⊥DC于点G,式于
的值为 .
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,点A(0,2)在y轴上,点B在x轴上,作∠BAC=90°,并使AB=AC.
(1)如图1,若点B的坐标为(﹣3,0),求点C的坐标.
(2)如图2,若点B的坐标为(﹣4,0),连接BC交y轴于点D,AC交x轴于点E,连接DE,求证:BE=AD+DE.
(3)在(1)的条件下,如图3,F为(4,0),作∠FAG=90°,并使AF=AG,连接GC交y轴于点H,求点H的坐标.

相关试题