【题目】如图,点M、N分别是正五边形ABCDE的边BC、CD上的点,且BM=CN,AM交BN于点P. ![]()
(1)求证:△ABM≌△BCN;
(2)求∠APN的度数.
参考答案:
【答案】
(1)证明:∵正五边形ABCDE,
∴AB=BC,∠ABM=∠C,
∴在△ABM和△BCN中
,
∴△ABM≌△BCN(SAS)
(2)解:∵△ABM≌△BCN,
∴∠BAM=∠CBN,
∵∠BAM+∠ABP=∠APN,
∴∠CBN+∠ABP=∠APN=∠ABC=
=108°.
即∠APN的度数为108°.
【解析】(1)利用正五边形的性质得出AB=BC,∠ABM=∠C,再利用全等三角形的判定得出即可;(2)利用全等三角形的性质得出∠BAM+∠ABP=∠APN,进而得出∠CBN+∠ABP=∠APN=∠ABC即可得出答案.
【考点精析】通过灵活运用多边形内角与外角,掌握多边形的内角和定理:n边形的内角和等于(n-2)180°.多边形的外角和定理:任意多边形的外角和等于360°即可以解答此题.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,AB=AC,CD⊥AB于D,BE⊥AC于E,BE与CD相交于点O.
(1)求证:AD=AE;
(2)连接OA,BC,试判断直线OA,BC的关系并说明理由.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,G 为 BC 的中点,且 DG⊥BC,DE⊥AB 于 E,DF⊥AC 于 F, BE=CF.
(1)求证:AD 是∠BAC 的平分线;
(2)如果 AB=8,AC=6,求 AE 的长.

-
科目: 来源: 题型:
查看答案和解析>>【题目】完成推理填空:如图在△ABC中,已知∠1+∠2=180°,∠3=∠B,试说明∠AED=∠C.

解:∵∠1+∠2=180°(已知),
∠1+∠EFD=180°(邻补角定义),
∴∠2=∠EFD( )
∴AB∥EF(内错角相等,两直线平行)
∴∠ADE=∠3( )
∵∠3=∠B(已知)
∴∠ADE=∠B( )
∴ (同位角相等,两直线平行)
∴∠AED=∠C(两直线平行,同位角相等).
-
科目: 来源: 题型:
查看答案和解析>>【题目】为推广阳光体育“大课间”活动,我市某中学决定在学生中开设A:实心球,B:立定跳远,C:跳绳,D:跑步四种活动项目.为了了解学生对四种项目的喜欢情况,随机抽取了部分学生进行调查,并将调查结果绘制成如图①②的统计图.请结合图中的信息解答下列问题:

(1)在这项调查中,共调查了多少名学生?
(2)请计算本项调查中喜欢“立定跳远”的学生人数和所占百分比,并将两个统计图补充完整;
(3)若调查到喜欢“跳绳”的5名学生中有3名男生,2名女生.现从这5名学生中任意抽取2名学生.请用画树状图或列表的方法,求出刚好抽到同性别学生的概率. -
科目: 来源: 题型:
查看答案和解析>>【题目】“马航事件”的发生引起了我国政府的高度重视,迅速派出了舰船和飞机到相关海域进行搜寻.如图,在一次空中搜寻中,水平飞行的飞机观测得在点A俯角为30°方向的F点处有疑似飞机残骸的物体(该物体视为静止).为了便于观察,飞机继续向前飞行了800米到达B点,此时测得点F在点B俯角为45°的方向上,请你计算当飞机飞临F点的正上方点C时(点A、B、C在同一直线上),竖直高度CF约为多少米?(结果保留整数,参考数值:
≈1.7)
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,
中,
,D,E,F分别为AB,BC,CA上的点,且
,
.(1)求证:
≌
;(2)若
,求
的度数.
相关试题