【题目】如图,反比例函数
的图像与一次函数
的图像交于点A(m,2),点B(-2, n ),一次函数图像与y轴的交点为C。
(1)求一次函数解析式;
(2)求C点的坐标;
(3)求△AOB的面积。
![]()
参考答案:
【答案】(1)y=x+1 ;(2)C(0,1) ; (3)S=1.5
【解析】分析:(1)首先由反比例函数的解析式分别求得m、n的值,再进一步根据点A、B的坐标求得一次函数的解析式;(2)根据(1)中求得的解析式,令x=0,即可求得点C的坐标;(3)根据点A、C的坐标即可求得OC=1,OC边上的高是点A的横坐标,进一步求得三角形的面积.
本题解析:(1)由题意,把A(m,2),B(2,n)代入y=
中,得
,
∴A(1,2),B(2,1)将A. B代入y=kx+b中得:
,∴
,
∴一次函数解析式为:y=x+1;
(2)由(1)可知:当x=0时,y=1,
∴C(0,1);
(3)作AD⊥y轴于D,作BE⊥y轴于E.
![]()
对于一次函数y=x+1,当x=0时,y=1,
∴C(0,1),
∵
,
∴
.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知:如图,∠1=∠2,∠A=∠F,试说明∠C=∠D.

解:∵
( 已知 )
( )∴
( 等量代换 )∴
( )∴
( 两直线平行,同位角相等 )∵
( 已知 )∴
( )∴
( 两直线平行,内错角相等 )∴
( ) -
科目: 来源: 题型:
查看答案和解析>>【题目】已知E,F分别为正方形ABCD的边BC,CD上的点,AF,DE相交于点G,当E,F分别为边BC,CD的中点时,有:①AF=DE;②AF⊥DE成立.
试探究下列问题:
(1)如图1,若点E不是边BC的中点,F不是边CD的中点,且CE=DF,上述结论①,②是否仍然成立?(请直接回答“成立”或“不成立”),不需要证明)
(2)如图2,若点E,F分别在CB的延长线和DC的延长线上,且CE=DF,此时,上述结论①,②是否仍然成立?若成立,请写出证明过程,若不成立,请说明理由;
(3)如图3,在(2)的基础上,连接AE和EF,若点M,N,P,Q分别为AE,EF,FD,AD的中点,请判断四边形MNPQ是“矩形、菱形、正方形”中的哪一种,并证明你的结论. -
科目: 来源: 题型:
查看答案和解析>>【题目】初三(1)班12名同学练习定点投篮,每人各投10次,进球数统计如下:
进球数(个)
1
2
3
4
5
7
人数(人)
1
1
4
2
3
1
这12名同学进球数的众数是( )
A.3.75
B.3
C.3.5
D.7 -
科目: 来源: 题型:
查看答案和解析>>【题目】某商场为了吸引顾客,设计了一种促销活动.在一个不透明的箱子里放有4个完全相同的小球,球上分别标有“0元”、“10元”、“30元”和“50元”的字样.规定:顾客在本商场同一日内,消费每满300元,就可以从箱子里先后摸出两个球(每次只摸出一个球,第一次摸出后不放回).商场根据两个小球所标金额之和返还相应价格的购物券,可以重新在本商场消费.某顾客消费刚好满300元,则在本次消费中:
(1)该顾客至少可得___元购物券,至多可得___元购物券;
(2)请用画树状图或列表法,求出该顾客所获购物券的金额不低于50元的概率.
-
科目: 来源: 题型:
查看答案和解析>>【题目】下面两个多位数1248624…… ,6248624…… ,都是按照如下方法得到的:将第一位数字乘以2,若积为一位数,将其写在第2位上,若积为两位数,则将其个位数字写在第2位.对第2位数字再进行如上操作得到第3位数字……,后面的每一位数字都是由前一位数字进行如上操作得到的.当第1位数字是3时,仍按如上操作得到一个多位数,则这个多位数前100位的所有数字之和是( )
A. 495 B. 497 C. 501 D. 503
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,正方形ABCD的边长为8,在各边上顺次截取AE=BF=CG=DH=5,则四边形EFGH的面积是( )

A.30
B.34
C.36
D.40
相关试题