【题目】如图,已知直径与等边△ABC的高相等的圆O分别与边AB、BC相切于点D、E,边AC过圆心O与圆O相交于点F、G.
(1)求证:DE∥AC;
(2)若△ABC的边长为a,求△ECG的面积.
![]()
参考答案:
【答案】(1)证明见解析;(2)
.
【解析】试题分析:(1)由△ABC是等边三角形可知∠B、∠C的度数,又因AB、BC是圆O的切线,D、E是切点,可知BD=BE,故可以证明两直线平行.
(2)分别连接OD、OE,作EH⊥AC于点H,由题意知条件可求出AO=OC,由圆O的直径等于△ABC的高,得半径OG,进而求出CG,EH,
有三角形面积公式求出数值.
试题解析:(1)∵△ABC是等边三角形,
∴∠B=60°,∠C=60°;
∵AB、BC是圆O的切线,D、E是切点,
∴BD=BE,
∴∠BDE=60°,∠A=60°,
∴DE∥AC.
(2)分别连接OD、OE,作EH⊥AC于点H.
![]()
∵AB、BC是圆O的切线,D、E是切点,O是圆心,
∴∠ADO=∠OEC=90°,OD=OE,AD=EC.
∴△ADO≌△CEO,有AO=OC=
a.
∵圆O的直径等于△ABC的高,得半径OG=
a,
∴CG=OC+OG=
a+
a,
∵EH⊥OC,∠C=60°,
∴∠COE=30°,EH=
a;
∵S△ECG=
CGEH=
(
a+
a)
a,
∴S△ECG=
a2+
a2=
.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知二次函数y=x2+2x﹣1.
(1)写出它的顶点坐标;
(2)当x取何值时,y随x的增大而增大;
(3)求出图象与x轴的交点坐标.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,⊙O与Rt△ABC的斜边AB相切于点D,与直角边AC相交于E、F两点,连结DE,已知∠B=30°,⊙O的半径为12,弧DE的长度为4π.
(1)求证:DE∥BC;
(2)若AF=CE,求线段BC的长度.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系中,抛物线y=ax2﹣3ax﹣4a的图象经过点C(0,2),交x轴于点A、B(A点在B点左侧),顶点为D.
(1)求抛物线的解析式及点A、B的坐标;
(2)将△ABC沿直线BC对折,点A的对称点为A′,试求A′的坐标;
(3)抛物线的对称轴上是否存在点P,使∠BPC=∠BAC?若存在,求出点P的坐标;若不存在,请说明理由.

-
科目: 来源: 题型:
查看答案和解析>>【题目】下列四个叙述,哪一个是正确的( )
A. 3x表示3+x
B. x2表示x+x
C. 3x2表示3x3x
D. 3x+5表示x+x+x+5
-
科目: 来源: 题型:
查看答案和解析>>【题目】2015年10月成立的无锡市新吴区总面积220平方公里,常住人口约55万人,下辖6个街道;2016年末,新吴区实现地区生产总值约1302亿元,用科学记数法表示该地区生产总值应记为( )
A.1302×108
B.1.302×103
C.1.302×1010
D.1.302×1011 -
科目: 来源: 题型:
查看答案和解析>>【题目】关于x的一元二次方程x2-x-(m+1)=0有两个不相等的实数根.
(1)求m的取值范围;
(2)若m为符合条件的最小整数,求此方程的根.
相关试题