【题目】超市销售某种儿童玩具,如果每件利润为40元(市场管理部门规定,该种玩具每件利润不能超过60元),每天可售出50件.根据市场调查发现,销售单价每增加2元,每天销售量会减少1件.设销售单价增加
元,每天售出
件.
(1)请写出
与
之间的函数表达式;
(2)当
为多少时,超市每天销售这种玩具可获利润2250元?
(3)设超市每天销售这种玩具可获利
元,当
为多少时
最大,最大值是多少?
【答案】(1)
(2)当
为10时,超市每天销售这种玩具可获利润2250元(3)当
为20时
最大,最大值是2400元
【解析】
(1)根据题意列函数关系式即可;
(2)根据题意列方程即可得到结论;
(3)根据题意得到
,根据二次函数的性质得到当
时,
随
的增大而增大,于是得到结论.
(1)根据题意得,
;
(2)根据题意得,
,
解得:
,
,
∵每件利润不能超过60元,
∴
,
答:当
为10时,超市每天销售这种玩具可获利润2250元;
(3)根据题意得,![]()
,
∵
,
∴当
时,
随
的增大而增大,
∴当
时,
,
答:当
为20时
最大,最大值是2400元.