【题目】某蔬菜经销商去蔬菜生产基地批发某种蔬菜,已知这种蔬菜的批发量在20千克~60千克之间(含20千克和60千克)时,每千克批发价是5元;若超过60千克时,批发的这种蔬菜全部打八折,但批发总金额不得少于300元.
(1)根据题意,填写如表:
蔬菜的批发量(千克) | … | 25 | 60 | 75 | 90 | … |
所付的金额(元) | … | 125 | 300 | … |
(2)经调查,该蔬菜经销商销售该种蔬菜的日销售量y(千克)与零售价x(元/千克)是一次函数关系,其图象如图,求出y与x之间的函数关系式;
(3)若该蔬菜经销商每日销售此种蔬菜不低于75千克,且当日零售价不变,那么零售价定为多少时,该经销商销售此种蔬菜的当日利润最大?最大利润为多少元?
![]()
参考答案:
【答案】(1)填表见解析;(2)y=-30x+240;(3)当x=5.5时,当日可获得利润最大,最大利润为112.5元.
【解析】
试题分析:(1)根据这种蔬菜的批发量在20千克~60千克之间(含20千克和60千克)时,每千克批发价是5元,可得60×5=300元;若超过60千克时,批发的这种蔬菜全部打八折,则90×5×0.8=360元;
(2)把点(5,90),(6,60)代入函数解析式y=kx+b(k≠0),列出方程组,通过解方程组求得函数关系式;
(3)利用最大利润=y(x-4),进而利用配方法求出函数最值即可.
试题解析:(1)由题意知:当蔬菜批发量为60千克时:60×5=300(元),当蔬菜批发量为90千克时:90×5×0.8=360(元),
填写表格如下:
蔬菜的批发量(千克) | … | 25 | 60 | 75 | 90 | … |
所付的金额(元) | … | 125 | 300 | 300 | 360 | … |
(2)设该一次函数解析式为y=kx+b(k≠0),
把点(5,90),(6,60)代入,得
,
解得:
.
故该一次函数解析式为:y=-30x+240;
(3)设当日可获利润w(元),日零售价为x元,由(2)知,
w=(-30x+240)(x-5×0.8)=-30(x-6)2+120,
∵-30x+240≥75,即x≤5.5,
∴当x=5.5时,当日可获得利润最大,最大利润为112.5元.
-
科目: 来源: 题型:
查看答案和解析>>【题目】下面说法中正确的是 ( )
A. 两数之和为正,则两数均为正 B. 两数之和为负,则两数均为负
C. 两数之和为0,则这两数互为相反数 D. 两数之和一定大于每一个加数
-
科目: 来源: 题型:
查看答案和解析>>【题目】正方体的每一面不同的颜色,对应着不同的数字,将四个这样的正方体如图拼成一个水平放置的长方体,那么长方体的下底面数字和为多少?

-
科目: 来源: 题型:
查看答案和解析>>【题目】某反比例函数的图象经过点A(﹣3,6),则下列各点中不在此函数图象上的是( )
A. (3,﹣6) B. (6,3) C. (﹣2,9) D. (﹣9,2)
-
科目: 来源: 题型:
查看答案和解析>>【题目】用代数式表示“a的3倍与b的和的平方”是__.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图是一组有规律的图案,它们是由边长相同的小正方形组成,其中部分小正方形涂有阴影,依此规律,第n个图案中有______个涂有阴影的小正方形(用含有n的代数式表示).

-
科目: 来源: 题型:
查看答案和解析>>【题目】下列命题正确的是( )
A. 一组对边平行,另一组对边相等的四边形是平行四边形
B. 对角线互相垂直的四边形是菱形
C. 对角线相等的四边形是矩形
D. 一组邻边相等的矩形是正方形
相关试题