【题目】在平面直角坐标系中,点O为原点,点A的坐标为(﹣6,0).如图1,正方形OBCD的顶点B在x轴的负半轴上,点C在第二象限.现将正方形OBCD绕点O顺时针旋转角α得到正方形OEFG.![]()
(1)如图2,若α=60°,OE=OA,求直线EF的函数表达式.
(2)若α为锐角,tanα=
,当AE取得最小值时,求正方形OEFG的面积.
(3)当正方形OEFG的顶点F落在y轴上时,直线AE与直线FG相交于点P,△OEP的其中两边之比能否为
:1?若能,求点P的坐标;若不能,试说明理由
参考答案:
【答案】
(1)
解:如图1,
![]()
过点E作EH⊥OA于点H,EF与y轴的交点为M.
∵OE=OA,α=60°,
∴△AEO为正三角形,
∴OH=3,EH=
=3
.
∴E(﹣3,3
).
∵∠AOM=90°,
∴∠EOM=30°.
在Rt△EOM中,
∵cos∠EOM=
,
即
=
,
∴OM=4
.
∴M(0,4
).
设直线EF的函数表达式为y=kx+4
,
∵该直线过点E(﹣3,3
),
∴﹣3k+4
=3
,
解得k=
,
所以,直线EF的函数表达式为y=
x+4 ![]()
(2)
解:如图2,
![]()
射线OQ与OA的夹角为α( α为锐角,tanα
).
无论正方形边长为多少,绕点O旋转角α后得到正方
形OEFG的顶点E在射线OQ上,
∴当AE⊥OQ时,线段AE的长最小.
在Rt△AOE中,设AE=a,则OE=2a,
∴a2+(2a)2=62,解得a1=
,a2=﹣
(舍去),
∴OE=2a= ![]()
,∴S正方形OEFG=OE2= ![]()
(3)
解:设正方形边长为m.
当点F落在y轴正半轴时.
如图3,
![]()
当P与F重合时,△PEO是等腰直角三角形,有
=
或
=
.
在Rt△AOP中,∠APO=45°,OP=OA=6,
∴点P1的坐标为(0,6).
在图3的基础上,
当减小正方形边长时,
点P在边FG 上,△OEP的其中两边之比不可能为
:1;
当增加正方形边长时,存在
=
(图4)和
=
(图5)两种情况.
如图4,
![]()
△EFP是等腰直角三角形,
有
=
,
即
=
,
此时有AP∥OF.
在Rt△AOE中,∠AOE=45°,
∴OE=
OA=6
,
∴PE=
OE=12,PA=PE+AE=18,
∴点P2的坐标为(﹣6,18).
如图5,
![]()
过P作PR⊥x轴于点R,延长PG交x轴于点H.设PF=n.
在Rt△POG中,PO2=PG2+OG2=m2+(m+n)2=2m2+2mn+n2,
在Rt△PEF中,PE2=PF2+EF2=m2+n2,
当
=
时,
∴PO2=2PE2.
∴2m2+2mn+n2=2(m2+n2),得n=2m.
∵EO∥PH,
∴△AOE∽△AHP,
∴
=
,
∴AH=4OA=24,
即OH=18,
∴m=9
.
在等腰Rt△PRH中,PR=HR=
PH=36,
∴OR=RH﹣OH=18,
∴点P3的坐标为(﹣18,36).
当点F落在y轴负半轴时,
如图6,
![]()
P与A重合时,在Rt△POG中,OP=
OG,
又∵正方形OGFE中,OG=OE,
∴OP=
OE.
∴点P4的坐标为(﹣6,0).
在图6的基础上,当正方形边长减小时,△OEP的其中
两边之比不可能为
:1;当正方形边长增加时,存在
=
(图7)这一种情况.
如图7,过P作PR⊥x轴于点R,
![]()
设PG=n.
在Rt△OPG中,PO2=PG2+OG2=n2+m2,
在Rt△PEF中,PE2=PF2+FE2=(m+n )2+m2=2m2+2mn+n2.
当
=
时,
∴PE2=2PO2.
∴2m2+2mn+n2=2n2+2m2,
∴n=2m,
由于NG=OG=m,则PN=NG=m,
∵OE∥PN,∴△AOE∽△ANP,∴
=1,
即AN=OA=6.
在等腰Rt△ONG中,ON=
m,
∴12=
m,
∴m=6
,
在等腰Rt△PRN中,RN=PR=6,
∴点P5的坐标为(﹣18,6).
所以,△OEP的其中两边的比能为
:1,点P的坐标是:P1(0,6),P2(﹣6,18),
P3(﹣18,36),P4(﹣6,0),P5(﹣18,6)
【解析】(1)先判断出△AEO为正三角形,再根据锐角三角函数求出OM即可;(2)判断出当AE⊥OQ时,线段AE的长最小,用勾股定理计算即可;(3)由△OEP的其中两边之比为
:1分三种情况进行计算即可.此题是正方形的性质题,主要考查了正方形的性质,等腰三角形的性质,勾股定理,解本题的关键是灵活运用勾股定理进行计算.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知抛物线y=
x2+bx+c经过△ABC的三个顶点,其中点A(0,1),点B(﹣9,10),AC∥x轴,点P是直线AC下方抛物线上的动点.
(1)求抛物线的解析式;
(2)过点P且与y轴平行的直线l与直线AB、AC分别交于点E、F,当四边形AECP的面积最大时,求点P的坐标;
(3)当点P为抛物线的顶点时,在直线AC上是否存在点Q,使得以C、P、Q为顶点的三角形与△ABC相似,若存在,求出点Q的坐标,若不存在,请说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△ABC三个顶点的坐标分别为A(1,1),B(4,2),C(3,4)
(1)若△A1B1C1与△ABC关于y轴成轴对称,则△A1B1C1三个顶点坐标分别为A1_____,B1_____,C1_____
(2)在y轴上是否存在点Q.使得S△ACQ=
S△ABC,如果存在,求出点Q的坐标,如果不存在,说明理由;(3)在x轴上找一点P,使PA+PB的值最小,请直接写出点P的坐标是_____.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系中,直线y=﹣2x+10与x轴,y轴相交于A,B两点,点C的坐标是(8,4),连接AC,BC.

(1)求过O,A,C三点的抛物线的解析式,并判断△ABC的形状;
(2)动点P从点O出发,沿OB以每秒2个单位长度的速度向点B运动;同时,动点Q从点B出发,沿BC以每秒1个单位长度的速度向点C运动.规定其中一个动点到达端点时,另一个动点也随之停止运动.设运动时间为t秒,当t为何值时,PA=QA?
(3)在抛物线的对称轴上,是否存在点M,使以A,B,M为顶点的三角形是等腰三角形?若存在,求出点M的坐标;若不存在,请说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知A(3,0),B(0,﹣1),连接AB,过B点作AB的垂线段BC,使BA=BC,连接AC.
(1)如图1,求C点坐标;
(2)如图2,若P点从A点出发沿x轴向左平移,连接BP,作等腰直角△BPQ,连接CQ,当点P在线段OA上,求证:PA=CQ;
(3)在(2)的条件下若C、P,Q三点共线,求此时∠APB的度数及P点坐标.

-
科目: 来源: 题型:
查看答案和解析>>【题目】已知抛物线C:y=x2﹣3x+m,直线l:y=kx(k>0),当k=1时,抛物线C与直线l只有一个公共点.

(1)求m的值;
(2)若直线l与抛物线C交于不同的两点A,B,直线l与直线l1:y=﹣3x+b交于点P,且
+
=
,求b的值;
(3)在(2)的条件下,设直线l1与y轴交于点Q,问:是否在实数k使S△APQ=S△BPQ?若存在,求k的值,若不存在,说明理由.
相关试题