【题目】若△ABC中,∠A∶∠B∶∠C=1∶2∶3,则△ABC一定是( )
A. 锐角三角形 B. 钝角三角形 C. 直角三角形 D. 等腰三角形
参考答案:
【答案】C
【解析】解:∵△ABC中,∠A:∠B:∠C=1:2:3,∴设∠A=x°,∠B=2x°,∠C=3x°,∵∠A+∠B+∠C=180,∴x+2x+3x=180°,∴x=30,∴∠C=90°,∠A=30°,∠B=60°,即△ABC是直角三角形,故选C.
-
科目: 来源: 题型:
查看答案和解析>>【题目】抛物线y=2(x﹣3)2+1的顶点坐标是( )
A.(3,1)
B.(3,﹣1)
C.(﹣3,1)
D.(﹣3,﹣1) -
科目: 来源: 题型:
查看答案和解析>>【题目】已知任意三角形的三边长,如何求三角形面积?
古希腊的几何学家海伦解决了这个问题,在他的著作《度量论》一书中给出了计算公式﹣﹣海伦公式S=
(其中a,b,c是三角形的三边长,p=
,S为三角形的面积),并给出了证明例如:在△ABC中,a=3,b=4,c=5,那么它的面积可以这样计算:
∵a=3,b=4,c=5
∴p=
=6∴S=
=
=6事实上,对于已知三角形的三边长求三角形面积的问题,还可用我国南宋时期数学家秦九韶提出的秦九韶公式等方法解决.
如图,在△ABC中,BC=5,AC=6,AB=9
(1)用海伦公式求△ABC的面积;
(2)求△ABC的内切圆半径r.

-
科目: 来源: 题型:
查看答案和解析>>【题目】若等腰三角形的两边长为6,8,则它的周长是 .
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△ABC中,∠ACB=90°,AC=6cm,BC=8cm.点P从A点出发沿A→C→B路径向终点运动,终点为B点;点Q从B点出发沿B→C→A路径向终点运动,终点为A点.点P和Q分别以每秒1cm和3cm的运动速度同时开始运动,两点都要到相应的终点时才能停止运动,在某时刻,分别过P和Q作PE⊥l于E,QF⊥l于F.设运动时间为t秒,则当t=_________秒时,△PEC与△QFC全等.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△ABC中,AB=AC,∠BAC=54°,点D为AB中点,且OD⊥AB,∠BAC的平分线与AB的垂直平分线交于点O,将∠C沿EF(E在BC上,F在AC上)折叠,点C与点O恰好重合,则∠OEC为______ °

-
科目: 来源: 题型:
查看答案和解析>>【题目】一个两位数是a,还有一个三位数是b,如果把这个两位数放在这个三位数的前面,组成一个五位数,则这个五位数的表示方法是( )
A. 10a+b B. 100a+b C. 1000a+b D. a+b
相关试题