【题目】如图,已知AB是O的直径,点C在O上,过点C的直线与AB的延长线交于点P,AC=PC,∠COB=2∠PCB.
(1)求证:PC是O的切线;
(2)求证:
;
(3)点M是弧AB的中点,CM交AB于点N,若AB=4,求MN·MC的值.
![]()
参考答案:
【答案】(1)(2)见解析(3)8
【解析】试题分析:(1)已知C在圆上,故只需证明OC与PC垂直即可;根据圆周角定理,易得∠PCB+∠OCB=90°,即OC⊥CP,故PC是⊙O的切线;
(2)AB是直径;故只需证明BC与半径相等即可;
(3)连接MA,MB,由圆周角定理可得∠ACM=∠BCM,进而可得△MBN∽△MCB,故BM2=MNMC,代入数据可得MNMC=BM2=8.
试题解析:(1)∵OA=OC,∴∠A=∠ACO,
又∵∠COB=2∠A,∠COB=2∠PCB,∴∠A=∠ACO=∠PCB,
又∵AB是⊙O的直径,∴∠ACO+∠OCB=90°,∴∠PCB+∠OCB=90°,
即OC⊥CP,
∵OC是⊙O的半径,∴PC是⊙O的切线;
(2)∵AC=PC,∴∠A=∠P,∴∠A=∠ACO=∠PCB=∠P.
又∵∠COB=∠A+∠ACO,∠CBO=∠P+∠PCB,∴∠COB=∠CBO,∴BC=OC,
∴
;
(3)连接MA,MB,
∵点M是弧AB的中点,∴ 弧AM=弧BM,∴∠ACM=∠BCM,
∵∠ACM=∠ABM,∴∠BCM=∠ABM,
∵∠BMN=∠BMC,∴△MBN∽△MCB,∴
,∴
,
又∵AB是⊙O的直径,弧AM=弧BM,
∴∠AMB=90°,AM=BM,
∵AB=4,∴
,
∴
.
![]()
-
科目: 来源: 题型:
查看答案和解析>>【题目】多项式 3a2+2a-6 是______次______项式,其中常数项是_______.
-
科目: 来源: 题型:
查看答案和解析>>【题目】点 A 在数轴上表示+2,从点 A 沿数轴平移 3 个单位到点 B,则点 B 表示的实数是_______.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,点E,F在BC上,BE=CF,∠A=∠D,∠B=∠C,AF与DE交于点O.

(1)求证:AB=DC;
(2)试判断△OEF的形状,并说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】6年前,甲的年龄是乙的3倍,现在甲的年龄是乙的2倍,甲现在_________岁,乙现在________岁.
-
科目: 来源: 题型:
查看答案和解析>>【题目】某班13位同学参加每周一次的卫生大扫除,按学校的卫生要求需要完成总面积为60m2的三个项目的任务,三个项目的面积比例和每人每分钟完成各项目的工作量如图所示:

(1)从统计图中可知:擦玻璃的面积占总面积的百分比为________,每人每分钟擦课桌椅________m2;
(2)扫地拖地的面积是________m2;
(3)他们一起完成扫地和拖地任务后,把这13人分成两组,一组去擦玻璃,一组去擦课桌椅,如果你是卫生委员,该如何分配这两组的人数,才能最快地完成任务?(要有详细的解答过程)
-
科目: 来源: 题型:
查看答案和解析>>【题目】小刚同学动手剪了如图①所示的正方形与长方形纸片若干张.

(1)他用1张1号、1张2号和2张3号卡片拼出一个新的图形(如图②).根据这个图形的面积关系写出一个你所熟悉的乘法公式,这个乘法公式是 ;
(2)如果要拼成一个长为(a+2b),宽为(a+b)的大长方形,则需要2号卡片 张,3号卡片 张;
(3)当他拼成如图③所示的长方形,根据6张小纸片的面积和等于打纸片(长方形)的面积可以把多项式a2+3ab+2b2分解因式,其结果是 ;
(4)动手操作,请你依照小刚的方法,利用拼图分解因式a2+5ab+6b2= 画出拼图.
相关试题