精英家教网如图,已知动点P在函数y=
1
2x
(x>0)的图象上运动,PM⊥x轴于点M,PN⊥y轴于点N,线段PM、PN分别与直线AB:y=-x+1交于点E,F,则AF•BE的值为(  )
A、4
B、2
C、1
D、
1
2
分析:由于P的坐标为(a,
1
2a
),且PN⊥OB,PM⊥OA,那么N的坐标和M点的坐标都可以a表示,那么BN、NF、BN的长度也可以用a表示,接着F点、E点的也可以a表示,然后利用勾股定理可以分别用a表示AF,BE,最后即可求出AF•BE.
解答:精英家教网解:作FG⊥x轴,
∵P的坐标为(a,
1
2a
),且PN⊥OB,PM⊥OA,
∴N的坐标为(0,
1
2a
),M点的坐标为(a,0),
∴BN=1-
1
2a

在直角三角形BNF中,∠NBF=45°(OB=OA=1,三角形OAB是等腰直角三角形),
∴NF=BN=1-
1
2a

∴F点的坐标为(1-
1
2a
1
2a
),
同理可得出E点的坐标为(a,1-a),
∴AF2=(1-1+
1
2a
2+(
1
2a
2=
1
2a2
,BE2=(a)2+(-a)2=2a2
∴AF2•BE2=
1
2a2
•2a2=1,即AF•BE=1.
故选C.
点评:本题的关键是通过反比例函数上的点P来确定E、F两点的坐标,进而通过坐标系中两点的距离公式得出所求的值.
关闭