【题目】某商场要经营一种新上市的文具,进价为20元/件.试营销阶段发现:当销售单价是25元时,每天的销售量为250件;销售单价每上涨1元,每天的销售量就减少10件.
(1)写出商场销售这种文具,每天所得的销售利润w(元)与销售单价x(元)之间的函数关系式;
(2)求销售单价为多少元时,该文具每天的销售利润最大;
(3)商场的营销部结合上述情况,提出了A、B两种营销方案: 方案A:该文具的销售单价高于进价且不超过30元;
方案B:每天销售量不少于10件,且每件文具的利润至少为25元
请比较哪种方案的最大利润更高,并说明理由.
参考答案:
【答案】
(1)解:由题意得,销售量=250﹣10(x﹣25)=﹣10x+500,
则w=(x﹣20)(﹣10x+500)
=﹣10x2+700x﹣10000
(2)解:w=﹣10x2+700x﹣10000=﹣10(x﹣35)2+2250.
∵﹣10<0,
∴函数图像开口向下,w有最大值,
当x=35时,w最大=2250,
故当单价为35元时,该文具每天的利润最大
(3)解:A方案利润高.理由如下:
A方案中:20<x≤30,
故当x=30时,w有最大值,
此时wA=2000;
B方案中:
,
故x的取值范围为:45≤x≤49,
∵函数w=﹣10(x﹣35)2+2250,对称轴为直线x=35,
∴当x=45时,w有最大值,
此时wB=1250,
∵wA>wB,
∴A方案利润更高
【解析】(1)根据利润=(销售单价﹣进价)×销售量,列出函数关系式即可;(2)根据(1)式列出的函数关系式,运用配方法求最大值;(3)分别求出方案A、B中x的取值范围,然后分别求出A、B方案的最大利润,然后进行比较.
-
科目: 来源: 题型:
查看答案和解析>>【题目】某校举行“做文明郴州人”演讲比赛,聘请了10位评委为参赛选手打分,赛前,组委会拟定了四种记分方案:方案一:取所有评委所给的平均分;
方案二:在所有评委给的分中,去掉一个最高分,去掉一个最低分,取剩余得分的平均分;
方案三:取所有评委给分的中位数;
方案四:取所有评委给分的众数.
为了探究四种记分方案的合理性,先让一名表演选手(不参加正式比赛的)演讲,让10位评委给演讲者评分,表演者得分如下表:
评委编号
1
2
3
4
5
6
7
8
9
10
打分
7.0
7.8
3.2
8.0
8.4
8.4
9.8
8.0
8.4
8.0
(1)请分别用上述四种方案计算表演者的得分;
(2)如果你是评委会成员,你会建议采用哪种可行的记分方案?你觉得哪几种方案不合适?
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知甲. 乙两车分别从相距300km的A. B两地同时出发,相向而行,其中甲到B地后立即返回,下图是它们离各自出发地的距离y(km)与行驶时间x(h)之间的函数图象.
(1)求甲车离出发地的距离y与行驶时间x之间的函数关系式,并写出自变量的取值范围;
(2)当它们行驶到与各自出发地的距离相等时甲用了4.5小时,求乙车离出发地的距离y与行驶时间x之间的函数关系式,并写出x的范围;
(3)在(2)的条件下,求它们的行驶过程中相遇的时间.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,A、B两点同时从原点O出发,点A以每秒x个单位长度沿x轴的负方向运动,点B以每秒y个单位长度沿y轴的正方向运动.
(1)若|x+2y﹣5|+|2x﹣y|=0,试分别求出1秒钟后A、B两点的坐标;

(2)设∠BAO的外角和∠ABO的外角的平分线相交于点P,问:点A、B在运动的过程中,∠P的大小是否会发生变化?若不发生变化,请求出其值;若发生变化,请说明理.

-
科目: 来源: 题型:
查看答案和解析>>【题目】下列说法中错误的是( )
A.若∣a∣=∣b∣,则a=bB.若a=b,则∣a∣=∣b∣
C.没有最小的有理数D.相反数等于它本身的数只有0.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,抛物线y=﹣
x2+mx+n与x轴交于A、B两点,与y轴交于点C,抛物线的对称轴交x轴于点D,已知A(﹣1,0),C(0,2).
(1)求抛物线的表达式;
(2)在抛物线的对称轴上是否存在点P,使△PCD是以CD为腰的等腰三角形?如果存在,直接写出P点的坐标;如果不存在,请说明理由;
(3)点E是线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,当点E运动到什么位置时,四边形CDBF的面积最大?求出四边形CDBF的最大面积及此时E点的坐标. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,将Rt△ABC(其中∠B=35°,∠C=90°)绕点A按顺时针方向旋转到△AB1C1的位置,使得点C,A,B1在同一条直线上,那么旋转角等于( )

A.55°
B.70°
C.125°
D.145°
相关试题