【题目】∠1 与∠2 互为邻补角,∠1=36°,∠2=_____.
参考答案:
【答案】144°
【解析】
两个角有一条公共边,它们的另一条边互为反向延长线,具有这种关系的两个角叫做邻补角;进而可得互为邻补角的两个角组成了一个平角,再结合平角的定义得到∠1+∠2=180°,即可求出∠2的度数.
若∠1与∠2互为邻补角,则∠1+∠2=180°.
∵∠1=36°,
∴∠2=144°.
故答案为144°.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图所示,在平面直角坐标系中,⊙C经过坐标原点O,且与x轴,y轴分别相交于M(4,0),N(0,3)两点.已知抛物线开口向上,与⊙C交于N,H,P三点,P为抛物线的顶点,抛物线的对称轴经过点C且垂直x轴于点D.
(1)求线段CD的长及顶点P的坐标;
(2)求抛物线的函数表达式;
(3)设抛物线交x轴于A,B两点,在抛物线上是否存在点Q,使得S四边形OPMN=8S△QAB,且△QAB∽△OBN成立?若存在,请求出Q点的坐标;若不存在,请说明理由.

-
科目: 来源: 题型:
查看答案和解析>>【题目】阅读材料:
在平面直角坐标系xOy中,点P(x0,y0)到直线Ax+By+C=0的距离公式为:d=
.例如:求点P0(0,0)到直线4x+3y﹣3=0的距离.
解:由直线4x+3y﹣3=0知,A=4,B=3,C=﹣3,
∴点P0(0,0)到直线4x+3y﹣3=0的距离为d=
=
.根据以上材料,解决下列问题:
问题1:点P1(3,4)到直线y=﹣
x+
的距离为 ;问题2:已知:⊙C是以点C(2,1)为圆心,1为半径的圆,⊙C与直线y=﹣
x+b相切,求实数b的值;问题3:如图,设点P为问题2中⊙C上的任意一点,点A,B为直线3x+4y+5=0上的两点,且AB=2,请求出S△ABP的最大值和最小值.

-
科目: 来源: 题型:
查看答案和解析>>【题目】坐标系中,点 P(-3,4)到 y 轴的距离是_____.
-
科目: 来源: 题型:
查看答案和解析>>【题目】计算
(1)5a﹣11a+7a
(2)3(x﹣2y)﹣4(2y﹣x)+x﹣2y
-
科目: 来源: 题型:
查看答案和解析>>【题目】某市为创建全国文明城市,开展“美化绿化城市”活动,计划经过若干年使城区绿化总面积新增360万平方米.自2013年初开始实施后,实际每年绿化面积是原计划的1.6倍,这样可提前4年完成任务.
(1)问实际每年绿化面积多少万平方米?
(2)为加大创城力度,市政府决定从2016年起加快绿化速度,要求不超过2年完成,那么实际平均每年绿化面积至少还要增加多少万平方米?
-
科目: 来源: 题型:
查看答案和解析>>【题目】若n是一个两位正整数,且n的个位数字大于十位数字,则称n为“两位递增数”(如13,35,56等).在某次数学趣味活动中,每位参加者需从由数字1,2,3,4,5,6构成的所有的“两位递增数”中随机抽取1个数,且只能抽取一次.
(1)写出所有个位数字是5的“两位递增数”;
(2)请用列表法或树状图,求抽取的“两位递增数”的个位数字与十位数字之积能被10整除的概率.
相关试题