【题目】如图,将正方形ABCD折叠,使顶点A与CD边上的一点H重合(H不与端点C,D重合),折痕交AD于点E,交BC于点F,边AB折叠后与边BC交于点G.设正方形ABCD的周长为m,△CHG的周长为n,则
的值为( ) ![]()
A.![]()
B.![]()
C.![]()
D.随H点位置的变化而变化
参考答案:
【答案】B
【解析】解:设CH=x,DE=y,则DH=
﹣x,EH=
﹣y, ∵∠EMG=90°,
∴∠DME+∠CMG=90°.
∵∠DME+∠DEM=90°,
∴∠DEM=∠CMG,
又∵∠D=∠C=90°△DEM∽△CMG,
∴
=
=
,即
=
=
,
∴CG=
,MG=
,
△CMG的周长为n=CM+CG+MG=
,
在Rt△DEM中,DM2+DE2=EM2
即(
﹣x)2+y2=(
﹣y)2
整理得
﹣x2=
,
∴n=CM+MG+CG=
=
=
.
∴
=
.
故选:B.
【考点精析】本题主要考查了翻折变换(折叠问题)的相关知识点,需要掌握折叠是一种对称变换,它属于轴对称,对称轴是对应点的连线的垂直平分线,折叠前后图形的形状和大小不变,位置变化,对应边和角相等才能正确解答此题.
-
科目: 来源: 题型:
查看答案和解析>>【题目】边长为6的等边△ABC中,点D、E分别在AC、BC边上,DE∥AB,EC=2


(1)如图1,将△DEC沿射线方向平移,得到△D′E′C′,边D′E′与AC的交点为M,边C′D′与∠ACC′的角平分线交于点N,当CC′多大时,四边形MCND′为菱形?并说明理由.
(2)如图2,将△DEC绕点C旋转∠α(0°<α<360°),得到△D′E′C,连接AD′、BE′.边D′E′的中点为P.
①在旋转过程中,AD′和BE′有怎样的数量关系?并说明理由;
②连接AP,当AP最大时,求AD′的值.(结果保留根号) -
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,抛物线y=ax2+bx+c经过平行四边形ABCD的顶点A(0,3)、B(﹣1,0)、D(2,3),抛物线与x轴的另一交点为E.经过点E的直线l将平行四边形ABCD分割为面积相等两部分,与抛物线交于另一点F.点P在直线l上方抛物线上一动点,设点P的横坐标为t

(1)求抛物线的解析式;
(2)当t何值时,△PFE的面积最大?并求最大值的立方根;
(3)是否存在点P使△PAE为直角三角形?若存在,求出t的值;若不存在,说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】在下列图形中,既是轴对称图形,又是中心对称图形的是( )
A.
直角三角形
B.
正五边形
C.
正方形
D.
平行四边形 -
科目: 来源: 题型:
查看答案和解析>>【题目】为了传承中华优秀传统文化,市教育局决定开展“经典诵读进校园”活动,某校团委组织八年级100名学生进行“经典诵读”选拔赛,赛后对全体参赛学生的成绩进行整理,得到下列不完整的统计图表.
组别
分数段
频次
频率
A
60≤x<70
17
0.17
B
70≤x<80
30
a
C
80≤x<90
b
0.45
D
90≤x<100
8
0.08
请根据所给信息,解答以下问题:

(1)表中a= , b=;
(2)请计算扇形统计图中B组对应扇形的圆心角的度数;
(3)已知有四名同学均取得98分的最好成绩,其中包括来自同一班级的甲、乙两名同学,学校将从这四名同学中随机选出两名参加市级比赛,请用列表法或画树状图法求甲、乙两名同学都被选中的概率. -
科目: 来源: 题型:
查看答案和解析>>【题目】为了维护国家主权和海洋权利,海监部门对我国领海实现了常态化巡航管理,如图,正在执行巡航任务的海监船以每小时50海里的速度向正东方航行,在A处测得灯塔P在北偏东60°方向上,继续航行1小时到达B处,此时测得灯塔P在北偏东30°方向上.

(1)求∠APB的度数;
(2)已知在灯塔P的周围25海里内有暗礁,问海监船继续向正东方向航行是否安全? -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,AB与⊙O相切于点C,OA,OB分别交⊙O于点D,E,
=

(1)求证:OA=OB;
(2)已知AB=4
,OA=4,求阴影部分的面积.
相关试题