【题目】如图,已知∠BAC=90°,AD⊥BC于D,E是AC的中点,ED的延长线交AB的延长线于点F.求证:
(1)△DFB∽△AFD;
(2)AB:AC=DF:AF.
![]()
参考答案:
【答案】(1)详见解析;(2)详见解析.
【解析】试题分析:(1)由已知条件得到∠BAC=∠ADB=
,根据余角的性质得到∠BAD=∠C,由直角三角形的性质和对顶角相等得到∠BAD=∠BDF,即可得到结论;
(2)根据已知条件推出△ABD∽△CAD;于是得到
由于△DFB∽△AFD;于是得到![]()
等量代换即可得到结论.
试题解析:(1)∵∠BAC=
,AD⊥BC于D,
∴∠BAC=∠ADB=
,
∴∠BAD+∠ABD=∠ABD+∠C=
,
∴∠BAD=∠C,
∵E是AC的中点,
∴DE=CE,
∴∠C=∠EDC,
∵∠EDC=∠BDF,
∴∠BAD=∠BDF,
∵∠F=∠F,
∴△DFB∽△AFD;
(2)∵AD⊥BC,
∴∠ADB=∠ADC=
,
∴∠BAD+∠DAC=
,∠DAC+∠ACD=
,
∴∠BAD=∠ACD,
∵∠ADB=∠ADC,
∴△ABD∽△CAD;
∴
∵△DFB∽△AFD;
∴
∴AB:AC=DF:AF.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知∠1=∠2,要说明△ABD≌△ACD,还需从下列条件中选一个,错误的选法是( )

A. ∠ADB=∠ADCB. ∠B=∠CC. DB=DCD. AB=AC
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知AB=AC,DE垂直平分AB交AC、AB于E、D两点,若AB=12cm,BC=10cm,∠A=50°,求△BCE的周长和∠EBC的度数.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△ABC是等边三角形,AB=4,E是AC的中点,D是直线BC上一动点,线段ED绕点E逆时针旋转90°,得到线段EF,当点D运动时,则AF的最小值为( )

A.2B.
C.
D.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△ABC是一块锐角三角形材料,高线AH长8cm,底边BC长10cm,要把它加工成一个矩形零件,使矩形DEFG的一边EF在BC上,其余两个顶点D、G分别在AB、AC上,AH交DG于M.
(1)求证:AMBC=AHDG;
(2)加工成的矩形零件DEFG的面积能否等于25cm2?若能,求出宽DE的长度;否则,请说明理由.

-
科目: 来源: 题型:
查看答案和解析>>【题目】观察下列图形的变化过程,解答以下问题:


如图,在△ABC中,D为BC边上的一动点(D点不与B、C两点重合).DE∥AC交AB于E点,DF∥AB交AC于F点.
(小题1)试探索AD满足什么条件时,四边形AEDF为菱形,并说明理由;
(小题2)在(1)的条件下,△ABC满足什么条件时,四边形AEDF为正方形?为什么?
-
科目: 来源: 题型:
查看答案和解析>>【题目】我市某储运部紧急调拨一批物资,调进物资共用4小时,调进物资2小时后开始调出物资(调进物资与调出物资的速度均保持不变).储运部库存物资S(吨)与时间t(小时)之间的函数关系如图所示,这批物资从开始调进到全部调出需要的时间是_________小时.

相关试题