【题目】如图,△ABC的两条角平分线BD、CE交于O,且∠A=60°,则下列结论中不正确的是( )
![]()
A.∠BOC=120° B.BC=BE+CD C.OD=OE D.OB=OC
参考答案:
【答案】D
【解析】
试题分析:根据三角形的内角和等于180°求出∠ABC+∠ACB=120°,再根据角平分线的性质求出∠OBC+∠OCB=60°,然后利用三角形的内角和等于180°列式计算即可求出∠BOC的度数;
连接OA,作OF⊥AB于点F,OG⊥AC于点G,OH⊥BC于点H,根据角平分线上的点到角的两边的距离相等可得OF=OG=OH,从而可得△BOF和△BOH全等,△COG和△COH全等,根据全等三角形对应边相等可得BH=BF,CH=CG,再根据四边形的内角和求出∠FOG=120°,根据对顶角相等求出∠EOD=120°,然后推出∠EOF=∠DOG,再利用“角边角”证明△EOF和△DOG全等,根据全等三角形对应边相等可得EF=DG,OD=OE,即可判定出B、C选项都正确,根据等角对等边的性质,只有∠ABC=∠ACB时才能得到OB=OC,所以D选项错误.
解:∵∠A=60°,
∴∠ABC+∠ACB=180°﹣∠A=180°﹣60°=120°,
∵△ABC的两条角平分线BD、CE交于O,
∴∠OBC=
∠ABC,∠OCB=
∠ACB,
∴∠BOC=180°﹣(∠OBC+∠OCB)=180°﹣
(∠ABC+∠ACB)=120°,故A选项正确;
如图,连接OA,作OF⊥AB于点F,OG⊥AC于点G,OH⊥BC于点H,
∵△ABC的两条角平分线BD、CE交于O,
∴OF=OG=OH,
利用“HL”可得△BOF≌△BOH,△COG≌△COH,
∴BH=BF,CH=CG,
在四边形AFOG中,∠FOG=360°﹣60°﹣90°×2=120°,
∴DOG=∠FOG﹣∠DOF=120°﹣∠DOF,
又∵∠EOD=∠BOC=120°,
∴∠EOF=∠EOD﹣∠DOF=120°﹣∠DOF,
∴∠EOF=∠DOG,
在△EOF和△DOG中,
,
∴△EOF≌△DOG(ASA),
∴EF=DG,OD=OE,故C选项正确;
∴BC=BH+CH=BF+CG=BE+EF+CD﹣DG=BE+CD,
即BC=BE+CD,故B选项正确;
只有当∠ABC=∠ACB时,∵△ABC的两条角平分线BD、CE交于O,
∴∠OBC=
∠ABC,∠OCB=
∠ACB,
∴∠OBC=∠OCB,
∴OB=OC,
而本题无法得到∠ABC=∠ACB,
所以,OB=OC不正确,故D选项错误.
故选D.
![]()
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,正方形ABCD中,AB=4,P是CD边上的动点(P点不与C、D重合),过点P作直线与BC的延长线交于点E,与AD交于点F,且CP=CE,连接DE、BP、BF,设CP═x,△PBF的面积为S1 ,△PDE的面积为S2 .

(1)求证:BP⊥DE.
(2)求S1﹣S2关于x的函数解析式,并写出x的取值范围.
(3)分别求当∠PBF=30°和∠PBF=45°时,S1﹣S2的值.
-
科目: 来源: 题型:
查看答案和解析>>【题目】下列运算正确的是( )
A.a2·a3=a6B.(-a2)3=-a5
C.a10÷a9=a(a≠0)D.(-bc)4÷(-bc)2=-b2c2
-
科目: 来源: 题型:
查看答案和解析>>【题目】(10)已知直线l与⊙O,AB是⊙O的直径,AD⊥l于点D.
(1)如图①,当直线l与⊙O 相切于点C时,若∠DAC=30°,求∠BAC的大小;
(2)如图②,当直线l与⊙O 相交于点E、F时,若∠DAE=18°,求∠BAF的大小.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如果点P (m+3,m-2)在x轴上,那么点P的坐标_____________.
-
科目: 来源: 题型:
查看答案和解析>>【题目】一个正数x的平方根是2a-3与5-a,则a=________.
-
科目: 来源: 题型:
查看答案和解析>>【题目】计算:
(1) (3a-2b)(9a+6b) (2)(2y-1)(4y2+1)(2y+1)
(3)3(2a+1)(-2a+1)-(
a-3)(3+
a) (4)[2(m+1)2-(2m+1)(2m-1)-3]÷(-4m)
相关试题