【题目】如图,△ABC中,D是BC上的一点,若AB=10,BD=6,AD=8,AC=17,求△ABC的面积. ![]()
参考答案:
【答案】解:∵BD2+AD2=62+82=102=AB2 , ∴△ABD是直角三角形,
∴AD⊥BC,
在Rt△ACD中,
,
∴S△ABC=
,
因此△ABC的面积为84.
答:△ABC的面积是84
【解析】根据AB=10,BD=6,AD=8,利用勾股定理的逆定理求证△ABD是直角三角形,再利用勾股定理求出CD的长,然后利用三角形面积公式即可得出答案.
【考点精析】利用勾股定理的概念和勾股定理的逆定理对题目进行判断即可得到答案,需要熟知直角三角形两直角边a、b的平方和等于斜边c的平方,即;a2+b2=c2;如果三角形的三边长a、b、c有下面关系:a2+b2=c2,那么这个三角形是直角三角形.
-
科目: 来源: 题型:
查看答案和解析>>【题目】有五张正面分别标有数字﹣2,﹣1,0,1,2的卡片,它们除数字不同外其余全部相同.现将它们背面朝上,洗匀后从中随机抽取一张,记卡片上的数字为a,则使关于x的一元二次方程x2﹣2(a﹣1)x+a(a﹣3)=0有两个不相等的实数根,且以x为自变量的二次函数y=x2﹣(a2+1)x﹣a+2的图象不经过点(1,0)的概率是__.
-
科目: 来源: 题型:
查看答案和解析>>【题目】(12分)如图,以△ABC的BC边上一点O为圆心的圆,经过A、B两点,且与BC边交于点E,D为BE的下半圆弧的中点,连接AD交BC于F,AC=FC.
(1)求证:AC是⊙O的切线;
(2)已知圆的半径R=5,EF=3,求DF的长.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如果等腰三角形一腰上的高与另一腰的夹角为45°,那么这个等腰三角形的底角度数为 .
-
科目: 来源: 题型:
查看答案和解析>>【题目】计算(mx+8)(2-3x)的结果中不含x的一次项,则m的值应为( )
A. 3 B. -12 C. 12 D. 24
-
科目: 来源: 题型:
查看答案和解析>>【题目】计算:(1)(-5a2b)(-3a);
(2)(2x3y)2·x3y+(-14x6)·(-xy)3.
-
科目: 来源: 题型:
查看答案和解析>>【题目】若新规定这样一种运算法则:a※b=a2+2ab,例如3※(﹣2)=32+2×3×(﹣2)=﹣3.
(1)试求(﹣2)※3的值;
(2)若(﹣5)※x=﹣2﹣x,求x的值.
相关试题