【题目】如图,在边长为12的正方形ABCD中,E是边CD的中点,将△ADE沿AE对折至△AFE,延长EF交BC于点G.则BG的长为( ) ![]()
A.5
B.4
C.3
D.2
参考答案:
【答案】B
【解析】解:在正方形ABCD中,AD=AB=BC=CD,∠D=∠B=∠BCD=90°, ∵将△ADE沿AE对折至△AFE,
∴AD=AF,DE=EF,∠D=∠AFE=90°,
∴AB=AF,∠B=∠AFG=90°,
又∵AG=AG,
在Rt△ABG和Rt△AFG中,
,
∴Rt△ABG≌Rt△AFG(HL),
∴BG=GF,
∵E是边CD的中点,
∴DE=CE=6,
设BG=x,则CG=12﹣x,GE=x+6,
∵GE2=CG2+CE2
∴(x+6)2=(12﹣x)2+62 ,
解得 x=4
∴BG=4.
故选B.![]()
【考点精析】根据题目的已知条件,利用翻折变换(折叠问题)的相关知识可以得到问题的答案,需要掌握折叠是一种对称变换,它属于轴对称,对称轴是对应点的连线的垂直平分线,折叠前后图形的形状和大小不变,位置变化,对应边和角相等.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在正方形ABCD中,对角线AC与BD相交于点O,点E是BC上的一个动点,连接DE,交AC于点F.

(1)如图①,当
时,求
的值;
(2)如图②当DE平分∠CDB时,求证:AF=
OA;
(3)如图③,当点E是BC的中点时,过点F作FG⊥BC于点G,求证:CG=
BG. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知:在平面直角坐标系中,抛物线
交x轴于A、B两点,交y轴于点C,且对称轴为x=﹣2,点P(0,t)是y轴上的一个动点.
(1)求抛物线的解析式及顶点D的坐标.
(2)如图1,当0≤t≤4时,设△PAD的面积为S,求出S与t之间的函数关系式;S是否有最小值?如果有,求出S的最小值和此时t的值.
(3)如图2,当点P运动到使∠PDA=90°时,Rt△ADP与Rt△AOC是否相似?若相似,求出点P的坐标;若不相似,说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】下列各图是选自历届世博会徽中的图案,其中是中心对称图形的是( )
A.
B.
C.
D.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图①,在平面直角坐标系中,平行四边形ABCD在第一象限,且AB∥x轴,直线y=﹣x从原点出发沿x轴正方向平移,被平行四边形ABCD截得的线段EF的长度l与平移的距离m的函数图象如图②,那么平行四边形ABCD的面积为( )

A.4
B.
C.8
D.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,AB为半圆O的直径,CD切⊙O于点E,AD、BC分别切⊙O于A、B两点,AD与CD相交于D,BC与CD相交于C,连接OD、OC,对于下列结论:①OD2=DECD;②AD+BC=CD;③OD=OC;④S梯形ABCD=CDOA;⑤∠DOC=90°;⑥若切点E在半圆上运动(A、B两点除外),则线段AD与BC的积为定值.其中正确的个数是( )

A.5
B.4
C.3
D.2 -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,四边形ABCD是菱形,∠A=60°,AB=6,扇形BEF的半径为6,圆心角为60°,则图中阴影部分的面积是 .

相关试题