【题目】如图1,已知△ABC中,AB=AC,点D是△ABC外一点(与点A分别在直线BC两侧).且DB=DC,过点D作DE//AC,交射线AB于E,连接AD交BC于F.
(1)求证:AD垂直BC;
(2)如图1,点E在线段AB上且不与B重合时,求证:DE=AE;
(3)如图2,当点E在线段AB的延长线上时,请直接写出线段DE,AC,BE的数量关系.
![]()
参考答案:
【答案】(1)详见解析;(2)详见解析;(3)DE=AC+BE
【解析】
(1)根据线段垂直平分线的判定定理即可得到结论;
(2)根据等腰三角形的性质得到∠BAF=∠CAF,根据平行线的性质得到∠CAF=∠ADE,等量代换得到∠BAF=∠ADE,于是得到DE=AE;
(3)由(1)得AF⊥BC,根据等腰三角形的性质得到∠BAF=∠CAE,根据平行线的性质得到∠EDA=∠CAF,等量代换得到∠BAF=∠EDA于是得到结论.
(1)∵AB=AC
∴点A在线段BC的垂直平分线上,
∵DB=DC
∴点D在线段BC的垂直平分线上,
∴直线AD是BC的垂直平分线,
∴AD垂直BC;
(2)∵AB=AC,AD⊥BC
∴∠BAD=∠CAD
∵DE∥AC
∴∠EDA=∠CAD
∴∠BAD=∠EDA
∴DE=AE
(3) DE=BE+AC,
由(1)得AF⊥BC,
∵AB=AC,
∴∠BAF=∠CAF,
∵DE∥AC,
∴∠EDA=∠CAF,
∴∠BAF=∠EDA,
∴EA=ED,
∵EA=EB+BA=EB+AC,
∴DE=BE+AC.
-
科目: 来源: 题型:
查看答案和解析>>【题目】在△ABC中,∠B+∠ACB=30°,AB=4,△ABC逆时针旋转一定角度后与△ADE重合,且点C恰好成为AD中点,如图
(1)指出旋转中心,并求出旋转角的度数.
(2)求出∠BAE的度数和AE的长.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在Rt△ABC中,∠ACB=90°,点D、E分别在AB、AC上,且CE=BC,连接CD,将线段CD绕点C按顺时针方向旋转90°后得到CF,连接EF.
(1)求证:△BDC≌△EFC;
(2)若EF∥CD,求证:∠BDC=90°.

-
科目: 来源: 题型:
查看答案和解析>>【题目】已知:如图,点C在∠AOB的一边OA上,过点C的直线DE∥OB,CF平分∠ACD,CG⊥CF于点C.
(1)若∠O=40°,求∠ECF的度数;
(2)求证:CG平分∠OCD.

-
科目: 来源: 题型:
查看答案和解析>>【题目】某校开展“我最喜爱的一项体育活动”调查,要求每名学生必选且只能选一项,现随机抽查了m名学生,并将其结果绘制成如下不完整的条形图和扇形图.

请结合以上信息解答下列问题:
(1)m= ;
(2)请补全上面的条形统计图;
(3)在图2中,“乒乓球”所对应扇形的圆心角的度数为 ;
(4)已知该校共有1200名学生,请你估计该校约有 名学生最喜爱足球活动.
-
科目: 来源: 题型:
查看答案和解析>>【题目】为加快“秀美荆河水系生态治理工程”进度,污水处理厂决定购买10台污水处理设备.现有A,B两种型号的设备,每台的价格分别为a万元,b万元,每月处理污水量分别为240吨,200吨.已知购买一台A型设备比购买一台B型设备多2万元,购买2台A型设备比购买3台B型设备少6万元.
(1)求a,b的值;
(2)厂里预算购买污水处理设备的资金不超过105万元,你认为有哪几种购买方案;
(3)在(2)的条件下,若每月要求处理污水量不低于2040吨,为了节约资金,请你为污水处理厂设计一种最省钱的购买方案.
-
科目: 来源: 题型:
查看答案和解析>>【题目】为保护环境,我市公交公司计划购买A型和B型两种环保节能公交车共10辆.若购买A型公交车1辆,B型公交车2辆,共需400万元;若购买A型公交车2辆,B型公交车1辆,共需350万元.
(1)求购买A型和B型公交车每辆各需多少万元?
(2)预计在某线路上A型和B型公交车每辆年均载客量分别为60万人次和100万人次.若该公司购买A型和B型公交车的总费用不超过1200万元,且确保这10辆公交车在该线路的年均载客总和不少于680万人次,则该公司有哪几种购车方案?
(3)在(2)的条件下,哪种购车方案总费用最少?最少总费用是多少万元?
相关试题