【题目】阅读材料:基本不等式
≤
(a>0,b>0),当且仅当a=b时,等号成立.其中我们把
叫做正数a、b的算术平均数,
叫做正数a、b的几何平均数,它是解决最大(小)值问题的有力工具.
例如:在x>0的条件下,当x为何值时,x+
有最小值,最小值是多少?
解:∵x>0,
>0∴
≥
即是x+
≥2![]()
∴x+
≥2
当且仅当x=
即x=1时,x+
有最小值,最小值为2.
请根据阅读材料解答下列问题
(1)若x>0,函数y=2x+
,当x为何值时,函数有最小值,并求出其最小值.
(2)当x>0时,式子x2+1+
≥2成立吗?请说明理由.
参考答案:
【答案】(1)x=
时,有最小值,最小值为2
;(2)式子不成立,见解析.
【解析】
(1)将原式变形为2x+
≥2
后,结合材料即可解决问题;
(2)将原式变形为x2+1+
≥2
后,结合材料及x>0即可作出判断.
解:(1)∵x>0,
∴2x>0,
∴2x+
≥2
=2
,
当且仅当2x=
即x=
时,2x+
有最小值,最小值为2
.
(2)式子不成立.
理由:∵x>0,
∴x2+1>0,
>0,
∴x2+1+
≥2
=2,
当且仅当x2+1=
即x=0时,不等式成立,
∵x>0,
∴不等式不能取等号,即不成立.
-
科目: 来源: 题型:
查看答案和解析>>【题目】为了让学生能更加了解温州历史,某校组织七年级师生共480人参观温州博物馆.学校向租车公司租赁A、B两种车型接送师生往返,若租用A型车3辆,B型车6辆,则空余15个座位;若租用A型车5辆,B型车4辆,则15人没座位.
(1)求A、B两种车型各有多少个座位;
(2)若A型车日租金为350元,B型车日租金为400元,且租车公司最多能提供7辆B型车,应怎样租车能使座位恰好坐满且租金最少,并求出最少租金.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,平行四边形
中,
,
,∠
,点
是
的中点,点
在
的边上,若
为等腰三角形,则
的长为__________.
-
科目: 来源: 题型:
查看答案和解析>>【题目】布袋里有四个小球,球表面分别标有2、3、4、6四个数字,它们的材质、形状、大小完全相同。从中随机摸出一个小球记下数字为x,再从剩下的三个球中随机摸出一个球记下数字为y,点A的坐标为(x,y).运用画树状图或列表的方法,写出A点所有可能的坐标,并求出点A在反比例函数
图象上的概率. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在矩形ABCD中,AB=5,AD=3,点P是AB边上一点(不与A,B重合),连接CP,过点P作PQ⊥CP交AD边于点Q,连接CQ.
(1)当△CDQ≌△CPQ时,求AQ=_________;
(2)取CQ的中点M,连接MD,MP,若MD⊥MP,求AQ=___________.

-
科目: 来源: 题型:
查看答案和解析>>【题目】某校八年级在一次广播操比赛中,三个班的各项得分如下表:
服装统一
动作整齐
动作准确
八(1)班
80
84
87
八(2)班
97
78
80
八(3)班
90
78
85
(1) 填空:根据表中提供的信息,在服装统一方面,三个班得分的平均数是_________;在动作准确方面最有优势的是_________班
(2) 如果服装统一、动作整齐、动作准确三个方面按20%、30%、50%的比例计算各班的得分,请通过计算说明哪个班的得分最高
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,一次函数y=-x+(k+13)和反比例函数
的图象相交于点A与点B.过A点作AC⊥x轴于点C,S△AOC=6.
(1)求反比例函数和一次函数的解析式;
(2)求点A与点B的坐标;
(3)求△AOB的面积.
相关试题