【题目】如图是抛物线y1=ax2+bx+c(a≠0)图象的一部分,抛物线的顶点坐标是A(1,3),与x轴的一个交点B(4,0),直线y2=mx+n(m≠0)与抛物线交于A,B两点,下列结论:①2a+b=0;②m+n=3;③抛物线与x轴的另一个交点是(﹣1,0);④方程ax2+bx+c=3有两个相等的实数根;⑤当1≤x≤4时,有y2<y1,其中正确的是( )
![]()
A.①②③B.①②④C.①②⑤D.②④⑤
参考答案:
【答案】B
【解析】
①利用对称轴x=1判定;
②把A(1,3)代入直线y2=mx+n即可判定;
③根据对称性判断;
④方程ax2+bx+c=3的根,就是图象上当y=3是所对应的x的值.
⑤由图象得出,当1≤x≤4时,有y2≤y1;
由抛物线对称轴为直线x=﹣
,从而b=﹣2a,则2a+b=0故①正确;
直线y2=mx+n过点A,把A(1,3)代入得m+n=3,故②正确;
由抛物线对称性,与x轴的一个交点B(4,0),则另一个交点坐标为(2,0)故③错误;
方程ax2+bx+c=3从函数角度可以看做是y=ax2+bx+c与直线y=3求交点,从图象可以知道,抛物线顶点为(1,3),则抛物线与直线有且只有一个交点
故方程ax2+bx+c=3有两个相等的实数根,因而④正确;
由图象可知,当1≤x≤4时,有y2≤y1 故当x=1或4时y2=y1 故⑤错误.
故选B.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图:已知在平面直角坐标系中,△ABC的位置如图所示:
(1)请写出点A、B、C三点的坐标.
(2)将△ABC向右平移6个单位,再向上平移2个单位,请在图中作出平移后的△A'B'C',并写出它们的坐标:A'( ),B'( ),C'( ).

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△ABC的面积为3,BD:DC=2:1,E是AC的中点,AD与BE相交于点P,那么四边形PDCE的面积为( )

A.
B.
C.
D. 
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在四边形ABCD中,AD=BC=12,AB=CD,BD=15,点E从D点出发,以每秒4个单位的速度沿D→A→D匀速移动,点F从点C出发,以每秒1个单位的速度沿CB向点B作匀速移动,点G从点B出发沿BD向点D匀速移动,三个点同时出发,当有一个点到达终点时,其余两点也随之停止运动,假设移动时间为t秒.

(1)试说明:AD∥BC;
(2)在移动过程中,小明发现有△DEG与△BFG全等的情况出现,请你探究这样的情况会出现几次?并分别求出此时的移动时间t和G点的移动距离.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知:如图,四边形ABCD中,AD∥BC,AD=CD,E是对角线BD上一点,且EA=EC.

(1)求证:四边形ABCD是菱形;
(2)如果BE=BC,且∠CBE:∠BCE=2:3,求证:四边形ABCD是正方形. -
科目: 来源: 题型:
查看答案和解析>>【题目】在△ABC中,AB=6,AC=8,BC=10,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为EF中点,则AM的最小值为_____.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平行四边形ABCD中,边AB的垂直平分线交AD于点E,交CB的延长线于点F,连接AF,BE.

(1)求证:△AGE≌△BGF;
(2)试判断四边形AFBE的形状,并说明理由.
相关试题