【题目】如图,已知四边形ABCD是平行四边形,AC为对角线,∠DAC=30°,∠ACD=90°,AD=8,点M为AC的中点,动点E从点C出发以每秒1个单位的速度运动到点B停止,连接EM并延长交AD于点F,设点E的运动时间为t秒.
(1)求四边形ABCD的面积;
(2)当∠EMC=90°时,判断四边形DCEF的形状,并说明理由;
(3)连接BM,点E在运动过程中是否能使△BEM为等腰三角形?如果能,求出t;如果不能,请说明理由.
【答案】(1)16(2)菱形,理由见解析(3)t=5.2或t=82
时,△BEM为等腰三角形
【解析】
(1)利用直角三角形中30°角所对的直角边等于斜边的一半求得平行四边形的定和高,再利用底乘以高计算面积;
(2)结合∠EMC=90°以及平行四边形的性质,可证明四边形DCEF是平行四边形,再通过计算得到平行四边形CDFE的一组邻边相等即可证得结论;
(3)探究△BEM为等腰三角形,要分三种情况进行讨论:EB=EM,EB=BM,EM=BM.通过相应的计算表示出BE,EM,BM,然后利用边相等建立方程进行求解.
(1)∵∠DAC=30°,∠ACD=90°,AD=8,
∴CD=4,AC==4
.
又∵四边形ABCD为平行四边形,
∴四边形ABCD的面积为4×4=16
.
(2)如图1,当∠EMC=90°时,四边形DCEF是菱形.
∵∠EMC=∠ACD=90°,
∴DC∥EF.
∵BC∥AD,
∴四边形DCEF是平行四边形,∠BCA=∠DAC.
由(1)可知:CD=4,AC=4.
∵点M为AC的中点,
∴CM=2.
在Rt△EMC中,∠CME=90°,∠BCA=30°.
∴CE=2ME,可得ME2+(2)2=(2ME)2,
解得:ME=2.
∴CE=2ME=4.
∴CE=DC.
又∵四边形DCEF是平行四边形,
∴四边形DCEF是菱形.
(3)点E在运动过程中能使△BEM为等腰三角形.
理由:如图2,过点B作BG⊥AD与点G,过点E作EH⊥AD于点H,连接DM.
∵DC∥AB,∠ACD=90°,
∴∠CAB=90°.
∴∠BAG=180°30°90°=60°.
∴∠ABG=30°.
∴AG=AB=2,BG=
=2
.
∵点E的运动速度为每秒1个单位,运动时间为t秒,
∴CE=t,BE=8t.
在△CEM和△AFM中
,
∴△CEM≌△AFM.
∴ME=MF,CE=AF=t.
∴HF=HGAFAG=BEAFAG=8t2t=62t.
∵EH=BG=2,
∴在Rt△EHF中,ME=EF=
=
.
∵M为平行四边形ABCD对角线AC的中点,
∴D,M,B共线,且DM=BM.
∵在Rt△DBG中,DG=AD+AG=10,BG=2,
∴BD=
故BM=×4
=2
.
要使△BEM为等腰三角形,应分以下三种情况:
当EB=EM时,有(8t)2= [12+(62t)2],
解得:t=5.2.
当EB=BM时,有8t=2,
解得:t=82.
当EM=BM时,由题意可知点E与点B重合,此时点B、E、M不构成三角形.
综上所述,当t=5.2或t=82时,△BEM为等腰三角形.
科目:初中数学 来源: 题型:
【题目】第十五届中国“西博会”已于年
月底在成都召开,现有
名志愿者准备参加某分会场的工作,其中男生
人,女生
人.
(1)若从这人中随机选取一人作为联络员,求选到女生的概率;
(2)若该分会场的某项工作只在甲、乙两人中选一人,他们准备以游戏的方式决定由谁参加,游戏规则如下:将四张牌面数字分别为、
、
、
的扑克牌洗匀后,数字朝下放于桌面,从中任取
张,若牌面数字之和为偶数,则甲参加,否则乙参加.试问这个游戏公平吗?请用树状图或列表法说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】△ABC中,∠B=90°,AB=9,BC=12,点p从点A开始延边AB向点B以1cm/s的速度移动,与此同时,点Q从点B开始沿边BC向点C以2cm/s的速度移动。如果P.Q分别从A.B同时出发,当点Q运动到点C时,两点停止运动,问:
(1)填空:BQ=______,PB=______(用含t的代数式表示)
(2)经过几秒,PQ的长为 cm?
(3)经过几秒,的面积等于
?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,反比例函数y=(x>0,k>0)的图象经过点A(1,a),B(m,n)(m>0),分别过A、B两点作y轴垂线,垂足分别为D,C,且CD=
.
(1)求k关于n的关系式;
(2)当△ABC面积为2时,求反比例函数的解析式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,将△ABO绕点A顺时针旋转到△AB1C1的位置,点 B、O分别落在点 B1、C1 处,点B1在x轴上,再将△AB1C1 绕点 B1 顺时针旋转到△A1B1C2的位置,点C2在x轴上,将△A1B1C2 绕点C2 顺时针旋转到△A2B2C2 的位置,点 A2 在x轴上,依次进行下去….若点 A(,0),B(0,4),则点 B2016 的横坐标为_______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我们在学完“平移、轴对称、旋转”三种图形的变化后,可以进行进一步研究,请根据示例图形,完成下表.
图形的变化 | 示例图形 | 与对应线段有关的结论 | 与对应点有关的结论 |
平移 | (1)__________. | ||
轴对称 | (2)__________. | (3)__________. | |
旋转 |
| (4)__________. |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com