【题目】如图,点
分别是
轴上位于原点两侧的两点,点
在第一象限,直线
交
轴于点
,直线
交
轴于点
,
.
(1)求
;
(2)求点
的坐标及
的值;
(3)若
,求直线
的函数表达式.
![]()
参考答案:
【答案】(1) 三角形的面积为2;(2)
,
;(3)
.
【解析】
(1)已知P的横坐标,即可知道△OCP的边OC上的高长,利用三角形的面积公式即可求解;
(2)求得△AOC的面积,即可求得A的坐标,利用待定系数法即可求得AP的解析式,把x=2代入解析式即可求得p的值;
(3)根据S△AOP=S△BOP,可以得到OB=OA,则A的坐标可以求得,利用待定系数法即可求得BD的解析式.
(1)作PE⊥y轴于E,
![]()
∵P的横坐标是2,则PE=2.
∴
(2)∴
∴
,即
∴OA=4,
∴A的坐标是(4,0).
设直线AP的解析式是y=kx+b,则
,
解得:
则直线的解析式是
当x=2时,y=3,即p=3;
(3)∵
∴OB=OA=4,则B的坐标是(4,0),
设直线BD的解析式是y=mx+n,则
解得
则BD的解析式是:
.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,把一个菱形绕着它的对角线的交点旋转90°,旋转前后的两个菱形构成一个“星形”(阴影部分),若菱形的一个内角为60°,边长为2,则该“星形”的面积是 .

-
科目: 来源: 题型:
查看答案和解析>>【题目】计算:
﹣|﹣
|+2﹣1 . -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,点P在矩形ABCD的对角线AC上,且不与点A,C重合,过点P分别作边AB,AD的平行线,交两组对边于点E,F和G,H.

(1)求证:△PHC≌△CFP;
(2)证明四边形PEDH和四边形PFBG都是矩形,并直接写出它们面积之间的关系. -
科目: 来源: 题型:
查看答案和解析>>【题目】保护视力要求人写字时眼睛和笔端的距离应超过30cm,图1是一位同学的坐姿,把他的眼睛B,肘关节C和笔端A的位置关系抽象成图2的△ABC,已知BC=30cm,AC=22cm,∠ACB=53°,他的这种坐姿符合保护视力的要求吗?请说明理由.(参考数据:sin53°≈0.8,cos53°≈0.6,tan53°≈1.3)

-
科目: 来源: 题型:
查看答案和解析>>【题目】下列说法:
(1)在同一平面内,不相交的两条直线一定平行.(2)在同一平面内,不相交的两条线段一定平行.(3)相等的角是对顶角.(4)两条直线被第三条直线所截,同位角相等.(5)两条平行线被第三条直线所截,一对内错角的角平分线互相平行.其中,正确说法的个数是( )
A. 1个 B.2个 C.3个 D.4个
-
科目: 来源: 题型:
查看答案和解析>>【题目】为了保护视力,学校开展了全校性的视力保健活动,活动前,随机抽取部分学生,检查他们的视力,结果如图所示(数据包括左端点不包括右端点,精确到0.1);活动后,再次检查这部分学生的视力,结果如表所示.
分组
频数
4.0≤x<4.2
2
4.2≤x<4.4
3
4.4≤x<4.6
5
4.6≤x<4.8
8
4.8≤x<5.0
17
5.0≤x<5.2
5

(1)求所抽取的学生人数;
(2)若视力达到4.8及以上为达标,估计活动前该校学生的视力达标率;
(3)请选择适当的统计量,从两个不同的角度分析活动前后相关数据,并评价视力保健活动的效果.
相关试题